Math 548

1. (a) Let G be a Lie group, and let θ be its Maurer–Cartan form. Prove that θ satisfies the following identity, known as the *Maurer-Cartan equation*:

$$d\theta + \frac{1}{2}[\theta, \theta] = 0.$$

- (b) If $P = M \times G \to M$ is a product principal *G*-bundle over *M*, show that $\pi_2^* \theta$ is a flat connection on *P*, where π_2 is projection onto *G* and θ is the Maurer–Cartan form of *G*.
- 2. Let *M* be a smooth *n*-manifold, and let F(M) be the frame bundle of *M*, considered as a principal $GL(n,\mathbb{R})$ -bundle with projection $\pi: F(M) \to M$. A point $f \in F(M)$ is a basis for the tangent space T_xM , where $x = \pi(f) \in M$; such a basis can be identified with a linear isomorphism $f: \mathbb{R}^n \to T_xM$. Define an \mathbb{R}^n -valued 1-form θ on F(M), called the *soldering form*, by

$$\theta_f(v) = f^{-1}(d\pi_f(v)), \qquad f \in F(M), \ v \in T_f F(M).$$

- (a) Show that θ is smooth.
- (b) Let ω be a principal connection on F(M), and define a smooth \mathbb{R}^n -valued 2-form Θ on F(M) by

$$\Theta = d\theta + \omega \wedge \theta$$
, i.e., $\Theta^i = d\theta^i + \omega^i_i \wedge \theta^j$

Show that

$$d\Theta + \omega \wedge \Theta = \Omega \wedge \theta.$$

where Ω is the curvature 2-form of ω .

- (c) Let ∇ be the connection on *TM* corresponding to ω . Show that Θ is identically zero if and only if ∇ is symmetric.
- Let *M* be a connected smooth manifold, let *E* → *M* be a smooth rank-*k* vector bundle, and let ∇ be a connection in *E*. Choose a basepoint *p* ∈ *M*, and for any piecewise smooth loop *γ*: [0,1] → *M* based at *p*, let *P*(*γ*): *E_p* → *E_p* be the linear map defined by parallel transport along *γ* from *t* = 0 to *t* = 1:

$$P(\gamma)v = \sigma(1),$$

where $\sigma : [0,1] \to E$ is the parallel section along γ satisfying $\sigma(0) = v$. Define a subset $H \subseteq GL(E_p)$ by

 $H = \{P(\gamma) : \gamma \text{ is a piecewise smooth loop based at } p\}.$

- (a) Show that H is a subgroup of $GL(E_p)$, called the *holonomy group of* ∇ *at* p.
- (b) By choosing a basis for E_p, we may identify GL(E_p) with GL(k, ℝ). Show that, up to conjugacy, the resulting subgroup H ⊆ GL(k, ℝ) is independent of choices: If we choose any other point p' ∈ M and any basis for E_{p'}, then the resulting group H' is conjugate in GL(k, ℝ) to H.
- (c) Show that E admits a reduction to H.
- (d) If *E* admits a reduction to some subgroup $G \subseteq GL(k, \mathbb{R})$ and ∇ is a *G*-connection, show that *H* is conjugate to a subgroup of *G*.