Math 548

For full credit, do any seven of the following problems.

- 1. Suppose M is a smooth manifold and $E \to M$ is a smooth (real or complex) vector bundle. Prove that there is a vector bundle $E' \to M$ such that $E \oplus E'$ is trivial.
- 2. Determine classifying spaces for the cyclic groups \mathbb{Z} and $\mathbb{Z}/\langle n \rangle$.
- 3. Suppose $G \to V \to B$ and $G' \to V' \to B'$ are principal bundles.
 - (a) Show that the Cartesian product bundle $G \times G' \to V \times V' \to B \times B'$ is a principal $G \times G'$ -bundle.
 - (b) If both V and V' are universal, show that the Cartesian product bundle $V \times V'$ is also universal.
 - (c) Using the fact that every finitely generated abelian group is a direct sum of cyclic groups, determine a classifying space for each finitely generated abelian group.
- 4. Recall that a fiber bundle $V \to B$ is said to be *n*-universal if every bundle with the same group and fiber over a CW complex (or manifold) of dimension at most *n* is isomorphic to a pullback of *V*. I showed in class that \mathbb{RP}^2 is 1-universal for real line bundles, and \mathbb{CP}^1 is 2-universal for complex line bundles. Given a bundle $E \to M$ over a manifold or CW complex of dimension at most *n*, we extend the notion of **classifying map for E** to include a map from *M* into the base of an *n*-universal bundle *V* that pulls *V* back to *E*.
 - (a) Show that the map $f: \mathbb{S}^1 \to \mathbb{RP}^2$ given by

$$f(e^{i\theta}) = \left[\cos\frac{\theta}{2}, \sin\frac{\theta}{2}, 0\right]$$

is a classifying map for the Möbius bundle. (Be sure to verify that it is well-defined and continuous.)

(b) Let $U \to \mathbb{CP}^1$ denote the tautological complex line bundle over \mathbb{CP}^1 . For k > 0, show that the map $p_k \colon \mathbb{CP}^1 \to \mathbb{CP}^1$ given by

 $p_k[z,w] = [z^k, w^k]$

is a classifying map for $U^k = U \otimes \ldots \otimes U$; and that

$$p_{-k}[z,w] = [\bar{z}^k, \bar{w}^k]$$

is a classifying map for \overline{U}^k .

- 5. Given a topological space X and a basepoint $x_0 \in X$, define $\pi_0(X, x_0)$ to be the set of path components of X, considered as a pointed set with the path component containing x_0 as its distinguished point. (In general, this set does not have a group structure.)
 - (a) Given a fiber bundle $F \to E \to B$, show that there is a map $\partial: \pi_1(B, b_0) \to \pi_0(F, f_0)$ such that the homotopy sequence of the bundle extends to an exact sequence

$$\dots \to \pi_1(E, e_0) \to \pi_1(B, b_0) \to \pi_0(F, f_0) \to \pi_0(E, e_0) \to \pi_0(B, b_0) \to \{0\},\$$

where exactness is interpreted to mean that the image of each map is equal to the preimage of the basepoint under the next map.

(b) If $\pi: E \to B$ is a fiber bundle with path connected fiber, show that the induced homomorphism $\pi_*: \pi_1(E, e_0) \to \pi_1(B, b_0)$ is surjective.

- 6. (a) If G is a topological group, show that $\pi_0(G, e)$ has a group structure such that the map $G \to \pi_0(G, e)$ sending each point to the path component containing it is a surjective homomorphism.
 - (b) Suppose $G \to P \to B$ is a principal G-bundle, with the identity e chosen as a basepoint in G. Show that the connecting map $\partial \colon \pi_1(B, b_0) \to \pi_0(G, e)$ whose existence you proved in Problem 5 is a group homomorphism.
 - (c) If G is a topological group and $H \subseteq G$ is a closed subgroup, show that the induced map $\pi_0(H, e) \rightarrow \pi_0(G, e)$ is a group homomorphism.
 - (d) If G is a Lie group and $H \subseteq G$ is a closed normal subgroup, show that every map in the extended homotopy sequence of the principal bundle $H \to G \to G/H$ is a group homomorphism.
- 7. Let $\mathscr{F} \to M$ be a sheaf, and let \mathscr{U}, \mathscr{V} be open covers of M such that \mathscr{V} refines \mathscr{U} . For any refining map $\rho \colon \mathscr{V} \to \mathscr{U}$, define the induced cochain map $\rho^{\#} \colon \check{C}^{k}(\mathscr{U}; \mathscr{F}) \to \check{C}^{k}(\mathscr{V}; \mathscr{F})$ by

$$(\rho^{\#}\gamma)(V_0,\ldots,V_k) = \gamma(\rho V_0,\ldots,\rho V_k).$$

- (a) Prove that $\rho^{\#} \circ \delta = \delta \circ \rho^{\#}$. Thus we can define an induced cohomology map $\rho^* : \check{H}^k(\mathscr{U};\mathscr{F}) \to \check{H}^k(\mathscr{V};\mathscr{F})$ by $\rho^*[\gamma] = [\rho^{\#}\gamma]$.
- (b) Complete the proof that ρ^* depends only on the covers \mathscr{U} and \mathscr{V} , and not on the refining map ρ , as follows. Given two refining maps $\rho, \tilde{\rho} \colon \mathscr{U} \to \mathscr{V}$, define a map $\theta \colon \check{C}^k(\mathscr{U}; \mathscr{F}) \to \check{C}^{k-1}(\mathscr{V}; \mathscr{F})$ by

$$(\theta c)(V_0,\ldots,V_{k-1}) = \sum_{i=0}^{k-1} (-1)^i c(\rho V_0,\ldots,\rho V_i,\widetilde{\rho} V_i,\ldots,\widetilde{\rho} V_{k-1})$$

and show that $\theta \circ \delta + \delta \circ \theta = \tilde{\rho}^{\#} - \rho^{\#}$.

- (c) For any sheaf homomorphism $\varphi \colon \mathscr{E} \to \mathscr{F}$, show that $\varphi_* \circ \rho^* = \rho^* \circ \varphi_*$.
- 8. Suppose $\mathscr{F} \to M$ is a sheaf. If \mathscr{U} and \mathscr{V} are open covers of M such that \mathscr{V} refines \mathscr{U} , show that the induced map $\rho_{\mathscr{U}\mathscr{V}}^* \colon \check{H}^1(\mathscr{U};\mathscr{F}) \to \check{H}^1(\mathscr{V};\mathscr{F})$ is injective. Conclude that $\check{H}^1(\mathscr{U};\mathscr{F})$ injects into $\check{H}^1(M;\mathscr{F})$ for every cover \mathscr{U} .
- 9. Let M be a smooth manifold, $E \to M$ a smooth vector bundle, and \mathscr{E} the sheaf of germs of smooth sections of E. For any open subset $U \subseteq M$, we have used the notation $\mathscr{E}(U)$ to denote both the space of continuous sections of \mathscr{E} over U and the space of smooth sections of E over U.
 - (a) Show that these spaces are isomorphic $C^{\infty}(M)$ -modules via the map that sends a smooth section $f: U \to E$ to the section $\sigma_f: U \to \mathscr{E}$ defined by $\sigma_f(x) = [f]_x$.
 - (b) Let f be a smooth section of E over an open set $U \subseteq M$. Show that the set of points where σ_f is nonzero is closed in M, while the set of points where f is nonzero is open in M. If M is connected, does this imply σ_f is constant if it vanishes somewhere? Explain.
- 10. Suppose \mathscr{R} is a ring, and $\{A_j\}_{j \in J}$, $\{B_j\}_{j \in J}$, and $\{C_j\}_{j \in J}$ are directed systems of \mathscr{R} -modules. Suppose also that for each $j \in J$, we are given an exact sequence of module homomorphisms

$$A_j \xrightarrow{\alpha_j} B_j \xrightarrow{\beta_j} C_j$$

such that, whenever $j, k \in J$ satisfy $j \leq k$, the following diagram commutes:

$$\begin{array}{cccc} A_j & \xrightarrow{\alpha_j} & B_j & \xrightarrow{\beta_j} & C_j \\ \downarrow & & \downarrow & & \downarrow \\ A_k & \xrightarrow{\alpha_k} & B_k & \xrightarrow{\beta_k} & C_k, \end{array}$$

where the vertical maps are the ones associated with the three directed systems of modules. (Such a system is called a *directed system of exact sequences*.) Show that there are module homomorphisms α and β such that the following sequence is exact.

$$\varinjlim A_j \xrightarrow{\alpha} \varinjlim B_j \xrightarrow{\beta} \varinjlim C_j.$$