Corrections to

Introduction to Smooth Manifolds, Draft Second Edition

by John M. Lee
June 4, 2007

$(2 / 6 / 07)$ Page 9, statement of Theorem 1.7: The last B should be \mathscr{B}.
(2/6/07) Page 28, statement of Proposition 1.28: In line 2, change "replace" to "replaced."
(2/6/07) Page 49, statement of Lemma 2.16: The hypothesis that $0<r_{1}$ is unnecessary and should be deleted.
(2/9/07) Page 105, second-to-last displayed equation and second-to-last line: Change \widetilde{V} to W (twice).
(2/9/07) Page 106, lines 3 and 4 from bottom: Change W to $\psi(\widetilde{V})$ (twice). Also, somewhere in there, add the observation that ψ is already known to be a homeomorphism onto an open subset of \mathbb{R}^{k}.
(2/9/07) Page 107, first line: Change S to \widetilde{S}.
(3/9/07) Page 177, Problem 7-9: Change "vector bundles" to "smooth vector bundles," "bundle map" to "smooth bundle map," and "bundle isomorphism" to "smooth bundle isomorphism."
(3/9/07) Page 204, proof of Prop. 8.28, third line: Change "suppose ω is closed" to "suppose (b) holds."
(3/9/07) Page 204, proof of Prop. 8.28, fifth line: Change "any coordinate chart $\left(U,\left(x^{i}\right)\right)$ " to "any coordinate chart $\left(V,\left(x^{i}\right)\right)$ with $V \subseteq U$."
(3/9/07) Page 204, just below the last displayed equation: Change (6.6) to (6.7).
(6/3/07) Page 210, Problem 8-8(b): Change "Proposition 5.16" to "Lemma 7.17."
(4/25/07) Page 238, Proposition 9.28(b): The last η is missing a d, so the formula should read

$$
d(\omega \wedge \eta)=d \omega \wedge \eta+(-1)^{k} \omega \wedge d \eta
$$

(5/6/07) Page 240, Proposition 9.29, property (ii): The last η is missing a d as on page 238.
(4/8/07) Page 269, Problem 10-3, last displayed equation: Change $t \geq 0$ and $t \leq 0$ to $t \geq t_{0}$ and $t \leq t_{0}$, respectively
(4/8/07) Page 270, Problem 10-4: The hint should refer to Problem 10-3.
(6/3/07) Page 270, Problem 10-11: Delete "the" before "both."
(4/10/07) Page 270, Problem 10-12: Assume that M and S are connected.
(6/3/07) Page 270, Problem 10-13: Change the last phrase to "yet \mathbb{R} is complete in the metric induced from the Euclidean metric on \mathbb{R}^{2}."
(4/11/07) Page 285, last paragraph: The first sentence should read, "Conversely, if the hypothesis of (b) is satisfied, then for each $p \in M$ there is an ε such that (11.10) holds for $|t|<\varepsilon$, and we have"
(5/17/07) Page 302, Problem 11-10, line 5: Change $\{0\} \times M$ to $\{0\} \times \partial M$.
(4/13/07) Page 302, Problem 11-10, lines 8 and 9: In the definition of "inward-pointing," add the condition that $X \notin T_{p} \partial M$.
(6/4/07) Page 302, Problem 11-10(b): Change the definition of \mathscr{D}_{δ} to

$$
\mathscr{D}_{\delta}=\{(t, p): p \in \partial M, 0 \leq t<\delta(p)\} .
$$

(6/3/07) Page 303, Problem 11-10(c): Change the statement to "Show that δ can be chosen so that θ is an embedding," and add the following hint: [Hint: Make sure $\delta(p)$ is less than half of the first time the integral curve starting at p hits the boundary (if it ever does).]"
(6/4/07) Page 303, Problem 11-10(d): No change (eliminate the correction posted earlier).
(4/25/07) Page 347, line 5: After the definition of what it means for a p-form to annihilate D, add the following sentence: "In the case $p=0$, only the zero function annihilates D."
(5/6/07) Page 383, just below the statement of Prop. 15.19: Instead of "Proof," it should say "Exercise."
(5/4/07) Page 398, proof of Proposition 16.11, last paragraph: Change"(i) and (i)" to "(i) and (ii)."
(5/8/07) Page 416, Problem 16-1: Replace the second sentence of the problem by the following: "Show that X has an open subset homeomorphic to \mathbb{S}^{n-1}, and a point that is contained in the boundary of every subset."
(6/4/07) Page 419, Problem 16-19: Change $\mathrm{SU}(n) \times \mathbb{R}^{n^{2}}$ to $\mathrm{SU}(n) \times \mathbb{R}^{n^{2}-1}$.
(5/6/07) Page 420, Problem 16-26(a): Add the hypothesis that G is connected.
(5/17/07) Page 425, second paragraph, last four lines: Change $\mathbb{R}^{n-1} \times J_{c}$ to $J_{c} \times \mathbb{R}^{n-1}$ and $U \times J_{c}$ to $J_{c} \times U_{c}$. Also, change every U in these four lines to U_{c} (four times in all).
(5/17/07) Page 426, third line from the end of Step 2: Change $\left.F\right|_{V}$ to $\left.F\right|_{Y}$.
(5/17/07) Page 429, line 8: Change $\mathbb{R}^{n m+n}$ to $\mathbb{R}^{n m+m}$.
(5/17/07) Page 432, proof of Proposition 17.13, line 7: Change $\varphi(N M \cap U)$ to $\widetilde{\varphi}\left(N M \cap \pi^{-1}(U)\right)$.
(5/17/07) Page 437, Proposition 17.20: Add the hypothesis that S is a smooth manifold.
(5/17/07) Page 438, line 9: Change $T_{z} N$ to $T_{z} X$.
(5/17/07) Page 438, line 10: Change $T F_{s}\left(T_{x} X\right)$ to $T F_{s}\left(T_{x} N\right)$.
(5/17/07) Page 439, Problem 17-4: Change \mathbb{R}^{m} to \mathbb{R}^{n}.
(5/17/07) Page A-56, Theorem A.77: We need a slightly stronger statement of the change of variables theorem:

Theorem A. 77 (Change of Variables). Suppose A and B are open domains of integration in \mathbb{R}^{n}, and $G: A \rightarrow B$ is a bijective smooth map with smooth inverse. For every bounded continuous function $f: B \rightarrow \mathbb{R}$,

$$
\int_{B} f d V=\int_{A}(f \circ G)|\operatorname{det} D G| d V
$$

