Math 546

I. Required problems.

- 1. Let $\mathring{g} = \overline{g}|_{\mathbb{S}^n}$ denote the round metric on the *n*-sphere, i.e., the metric induced from the Euclidean metric by the usual inclusion of \mathbb{S}^n into \mathbb{R}^{n+1} . Derive an expression for \mathring{g} in stereographic coordinates by computing the pullback $(\sigma^{-1})^*\overline{g}$. Do the analogous computation in spherical coordinates (x, y, z) = $(\sin \varphi \cos \theta, \sin \varphi \sin \theta, \cos \varphi)$.
- 2. Let (M, g) be an *n*-dimensional Riemannian manifold.
 - (a) For any $p \in M$, show that there is an *orthonormal frame* on a neighborhood of p, that is, a smooth frame (E_1, \ldots, E_n) such that $g(E_i, E_j) = \delta_{ij}$. [Hint: start with a coordinate frame and use the Gram-Schmidt process. Be sure to show that the resulting frame is smooth.]
 - (b) Observe that part (a) did *not* ask you to show that there are coordinates near p for which the *coordinate frame* is orthonormal. Show that there are such coordinates if and only if p has a neighborhood U such that (U, g) is isometric to an open subset of \mathbb{R}^n with the Euclidean metric.
 - (c) Now let $N \subset M$ be an embedded k-dimensional submanifold, endowed with the induced metric. Show that for any $p \in N$, there is an orthonormal frame (E_1, \ldots, E_n) for M on a neighborhood U of p in M such that, at each $p \in U \cap N$, $(E_1|_p, \ldots, E_k|_p)$ is an orthonormal frame for T_pN . (Such a frame is called an *adapted orthonormal frame* for N.)
- 3. Let M be a compact Riemannian *n*-manifold, and $f \in C^{\infty}(M)$. Suppose f has only finitely many critical points $\{p_1, \ldots, p_k\}$ with corresponding critical values $\{c_1, \ldots, c_k\}$. (Assume without loss of generality that $c_1 \leq \cdots \leq c_k$.) For any $a, b \in \mathbb{R}$, define $M_a = f^{-1}(a)$ and $M_{[a,b]} = f^{-1}([a,b])$. If a is a regular value, note that M_a is an embedded hypersurface in M.
 - (a) Let X be the vector field $X = \operatorname{grad} f/|\operatorname{grad} f|^2$ on $M \setminus \{p_1, \ldots, p_k\}$, and let θ denote the flow of X. Show that $f(\theta_t(p)) = f(p) + t$ whenever $\theta_t(p)$ is defined.
 - (b) Let $[a, b] \subset \mathbb{R}$ be an interval containing no critical values of f. Show that

$$\theta: [0, b-a] \times M_a \longrightarrow M_{[a,b]}$$

is a diffeomorphism, whose inverse is $p \mapsto (f(p) - a, \theta(a - f(p), p))$.

[Remark: This result shows that M can be decomposed as a union of simpler "building blocks"—the product manifolds $M_{[c_i+\varepsilon,c_{i+1}-\varepsilon]} \approx I \times M_{c_i+\varepsilon}$, and the neighborhoods $f^{-1}((c_i-\varepsilon,c_i+\varepsilon))$ of the critical points. This is the starting point of *Morse theory*, which is one of the deepest applications of differential geometry to topology. It is enlightening to think about what this means when M is a doughnut-shaped surface in \mathbb{R}^3 obtained by revolving a circle around the z-axis, and f(x, y, z) = x.]

II. Optional problems.

- 4. Let M be a smooth manifold. Show that TM is a trivial bundle if and only if T^*M is a trivial bundle.
- 5. Determine all Killing fields on $(\mathbb{R}^n, \overline{g})$.