I. Required problems.

- 1. In each of the cases below, M is a smooth manifold and $f: M \to \mathbb{R}$ is a smooth function. Compute the coordinate representation for df, and determine the set of all points $p \in M$ at which $df_p = 0$.
 - (a) $M = \{(x, y) \in \mathbb{R}^2 : x > 0\}; f(x, y) = \tan^{-1}(y/x)$. Use standard coordinates (x, y).
 - (b) M and f are as in part (1a); this time use polar coordinates (r, θ) .
 - (c) $M = S^2 \subset \mathbb{R}^3$; f(p) = z(p) (the z-coordinate of p, thought of as a point in \mathbb{R}^3). Use stereographic coordinates.
 - (d) $M = \mathbb{R}^n$; $f(x) = |x|^2$. Use standard coordinates.
- 2. Let $N \subset M$ be a connected immersed submanifold. Show that a function $f \in C^{\infty}(M)$ is constant on N if and only if $df|_N = 0$.
- 3. Let M be a smooth *n*-manifold, and σ a covariant *k*-tensor field on M. If $\{x^i\}$ and $\{\tilde{x}^j\}$ are overlapping coordinate charts on M, we can write

$$\sigma = \sigma_{i_1 \dots i_k} dx^{i_1} \otimes \dots \otimes dx^{i_k} = \sigma = \widetilde{\sigma}_{j_1 \dots j_k} d\widetilde{x}^{j_1} \otimes \dots \otimes d\widetilde{x}^{j_k}.$$

Compute a transformation law analogous to (10.3) expressing the component functions $\sigma_{i_1...i_k}$ in terms of $\tilde{\sigma}_{j_1...j_k}$.

- 4. Let V and W be finite-dimensional vector spaces. Prove that there is a natural (basis-independent) isomorphism between $V^* \otimes W$ and the space Hom(V, W) of linear maps from V to W.
- 5. Let M be a smooth manifold.
 - (a) Show that a covariant k-tensor field τ is smooth if and only if, whenever X_1, \ldots, X_k are smooth vector fields defined on an open subset $U \subset M$, the function $\tau(X_1, \ldots, X_k)$ defined in the obvious way is smooth on M.
 - (b) Given a smooth k-tensor field τ , show that the map $\mathfrak{T}(M) \times \cdots \times \mathfrak{T}(M) \longrightarrow C^{\infty}(M)$ defined by

$$(X_1,\ldots,X_k)\mapsto \tau(X_1,\ldots,X_k)$$

is multilinear over $C^{\infty}(M)$, in the sense that for any smooth functions $f, f' \in C^{\infty}(M)$ and smooth vector fields X_i, X'_i ,

$$\tau(X_1,\ldots,fX_i+f'X'_i,\ldots,X_k)=f\tau(X_1,\ldots,X_i,\ldots,X_k)+f'\tau(X_1,\ldots,X'_i,\ldots,X_k).$$

(c) TENSOR CHARACTERIZATION LEMMA: Show that a map

$$\widetilde{\tau}: \mathfrak{T}(M) \times \cdots \times \mathfrak{T}(M) \longrightarrow C^{\infty}(M)$$

is induced by a smooth tensor field as above if and only if it is multilinear over $C^\infty(M).$

II. Optional problems.

6. Generalize problem 3 to mixed tensors of any rank.