I. Required problems.

1. Suppose M is a smooth compact manifold.
 (a) If $f: M \to \mathbb{R}$ is a smooth function, show that f vanishes at some point of M.
 (b) Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k.

2. Consider the map $F: \mathbb{R}^4 \to \mathbb{R}^2$ defined by
 $$F(x, y, s, t) = (x^2 + y, x^2 + y^2 + s^2 + t^2 + y).$$
 Show that $(0, 1)$ is a regular value of F, and that the level set $F^{-1}(0, 1)$ is diffeomorphic to S^2.

3. Exercise 3.4 in the notes.

4. Define subsets of \mathbb{R}^2 by
 $$M = \{(x, y) \in \mathbb{R}^2 : xy = 0\},$$
 $$N = \{(x, y) \in \mathbb{R}^2 : x^2 = y^3\}.$$
 Answer the following questions for each of these two subsets. Prove your answers correct.
 (a) Is it an embedded submanifold of \mathbb{R}^2?
 (b) If the answer to (a) is no, can it be given a smooth manifold structure (i.e., manifold topology and smooth structure) such that it is an immersed submanifold of \mathbb{R}^2?

II. Optional problems.

5. Let $F: M \to N$ be a smooth map of constant rank k, and let $S = F(M)$. Show that S can be given a manifold topology and smooth structure such that it is an immersed k-dimensional submanifold of N and $F: M \to S$ is smooth. Are these structures unique?

6. Decide whether each of the following statements is true or false, and discuss why.
 (a) If $F: M \to N$ is a smooth map and $F^{-1}(c)$ is an embedded submanifold of M for some $c \in N$, then c is a regular value of F.
 (b) If $S \subset M$ is a closed embedded submanifold, there is a smooth map $F: M \to P$ such that S is a regular level set of F.