Assignment #5 Due 2/9/2000

I. Required problems.

- 1. Suppose M is a smooth compact manifold.
 - (a) If $f: M \to \mathbb{R}$ is a smooth function, show that f_* vanishes at some point of M.
 - (b) Show that there is no smooth submersion $F: M \to \mathbb{R}^k$ for any k.
- 2. Consider the map $F: \mathbb{R}^4 \to \mathbb{R}^2$ defined by

$$F(x, y, s, t) = (x^{2} + y, x^{2} + y^{2} + s^{2} + t^{2} + y).$$

Show that (0,1) is a regular value of F, and that the level set $F^{-1}(0,1)$ is diffeomorphic to \mathbb{S}^2 .

- 3. Exercise 3.4 in the notes.
- 4. Define subsets of \mathbb{R}^2 by

$$M = \{(x, y) \in \mathbb{R}^2 : xy = 0\},\$$

$$N = \{(x, y) \in \mathbb{R}^2 : x^2 = y^3\}.$$

Answer the following questions for each of these two subsets. Prove your answers correct.

- (a) Is it an embedded submanifold of \mathbb{R}^2 ?
- (b) If the answer to (a) is no, can it be given a smooth manifold structure (i.e., manifold topology and smooth structure) such that it is an immersed submanifold of \mathbb{R}^2 ?

II. Optional problems.

- 5. Let $F: M \to N$ be a smooth map of constant rank k, and let S = F(M). Show that S can be given a manifold topology and smooth structure such that it is an immersed k-dimensional submanifold of N and $F: M \to S$ is smooth. Are these structures unique?
- 6. Decide whether each of the following statements is true or false, and discuss why.
 - (a) If $F: M \to N$ is a smooth map and $F^{-1}(c)$ is an embedded submanifold of M for some $c \in N$, then c is a regular value of F.
 - (b) If $S \subset M$ is a closed embedded submanifold, there is a smooth map $F \colon M \to P$ such that S is a regular level set of F.