I. Required problems.

1. (a) Show that the image of a Lie group homomorphism is a Lie subgroup.
 (b) Show that the images of one-parameter subgroups in a Lie group G are precisely the connected Lie subgroups of dimension less than or equal to 1.
 (c) If $H \subset G$ is the image of a one-parameter subgroup, show that H is Lie isomorphic to one of the following: the trivial group $\{e\}$, \mathbb{R}, or S^1.

2. Prove that there is exactly one nonabelian 2-dimensional Lie algebra up to isomorphism.

3. Let A and B be the following elements of $\mathfrak{gl}(2, \mathbb{R})$:

 $$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}; \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}. $$

 Compute the one-parameter subgroups of $\text{GL}(2, \mathbb{R})$ generated by A and B.

4. (a) Suppose $A \in \text{GL}(n, \mathbb{R})$ is of the form e^B for some $B \in \mathfrak{gl}(n, \mathbb{R})$. Show that A has a square root, i.e., a matrix $C \in \text{GL}(n, \mathbb{R})$ such that $C^2 = A$.
 (b) Let

 $$A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix}. $$

 Show that the exponential map $\exp: \mathfrak{gl}(2, \mathbb{R}) \rightarrow \text{GL}(2, \mathbb{R})$ is not surjective, by showing that A is not in its image.

II. Optional problems.

5. Let $\{i, j, k\}$ denote the standard basis of \mathbb{R}^3, and let $\mathbb{H} = \mathbb{R} \times \mathbb{R}^3$, with basis $\{1, i, j, k\}$. Define a bilinear multiplication $\mathbb{H} \times \mathbb{H} \rightarrow \mathbb{H}$ by setting

 $$1q = q1 = q \text{ for all } q \in \mathbb{H},$$
 $$ij = -ji = k,$$
 $$jk = -kj = i,$$
 $$ki = -ik = j,$$
 $$i^2 = j^2 = k^2 = -1,$$

 and extending bilinearly. With this multiplication, \mathbb{H} is called the ring of quaternions.
 (a) Show that quaternionic multiplication is associative.
(b) Show that the set S of unit quaternions (with respect to the Euclidean metric) is a Lie group under quaternionic multiplication, and is Lie isomorphic to SU(2).

(c) For any point $q \in \mathbb{H}$, show that the quaternions iq, jq, and kq are orthogonal to q. Use this to define a left-invariant frame on S, and show that it corresponds under the isomorphism of (b) to the one defined in Example 9.6(c).

6. Look up the Cayley numbers, and use them to prove that S^7 is parallelizable by mimicking as much as you can of Problem 4. Why do the unit Cayley numbers not form a Lie group?