I. Required problems.

1. Suppose V and W are finite-dimensional vector spaces and $F: V \to W$ is any linear map. The rank of F is the dimension of its image, and the nullity of F is the dimension of its kernel.

 (a) Show that there are bases $\{E_1, \ldots, E_n\}$ for V and $\{E'_1, \ldots, E'_m\}$ for W with respect to which the matrix of F has the block form

 $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$,

 where I_r is the $r \times r$ identity matrix and r is the rank of F.

 (b) Prove the rank-nullity law:

 $\text{rank } F + \text{nullity } F = \dim V$.

2. Let $F: \mathbb{R}^n \to \mathbb{R}^m$ and $G: \mathbb{R}^m \to \mathbb{R}^p$ be linear maps. Show that

 $|F(x)| \leq |F||x|,

 $|F \circ G| \leq |F||G|$,

 where

 $|F| = \sqrt{\sum_{i,j} (F_i^j)^2}$

 and $|G|$ is defined similarly. (Here F_i^j are the matrix entries of F with respect to the standard bases.)

3. Suppose $f_i: A \to \mathbb{R}$ is a sequence of real-valued continuous functions defined on a set $A \subset \mathbb{R}^n$.

 (a) Prove the Weierstrass M-test: if there exist positive real numbers M_i such that $\sup_A |f_i| \leq M_i$ and $\sum_i M_i$ converges, then $\sum_i f_i$ converges uniformly on A.

 (b) If $f_i \to f$ uniformly on A, prove that f is continuous.

 (c) If $A = [a_1, b_1] \times \cdots \times [a_n, b_n]$ is a closed n-dimensional rectangle and $f_i \to f$ uniformly on A, prove that

 $\lim_{i \to \infty} \int_A f_i \, dx^1 \cdots dx^n = \int_A f \, dx^1 \cdots dx^n$.

(d) If A is open, each f_i is of class C^1, $f_i \to f$ pointwise on A, and $\partial f_i / \partial x^j \to g$ uniformly on A, prove that $\partial f / \partial x^j$ exists and

$$\frac{\partial f}{\partial x^j} = \lim_{i \to \infty} \frac{\partial f_i}{\partial x^j}.$$

4. Let $f: U \to \mathbb{R}$ be a smooth function on a convex open set $U \subset \mathbb{R}^n$. Prove Taylor’s formula with remainder: for any $a \in U$,

$$f(x) = f(a) + \frac{\partial f}{\partial x^i}(a)(x^i - a^i) + g_i(x)(x^i - a^i),$$

(Using the summation convention) where $g_i: U \to \mathbb{R}$ are smooth functions that vanish at a. [Hint: apply the fundamental theorem of calculus, the chain rule, and Problem 5 to

$$\int_0^1 \frac{\partial}{\partial t} f(a + t(x - a)) \, dt.$$]

II. Optional problems.

5. Let $U \subset \mathbb{R}^n$ be an open set, $a, b \in \mathbb{R}$, and let $f: U \times [a, b] \to \mathbb{R}$ be a smooth function. Define $F: U \to \mathbb{R}$ by

$$F(x) = \int_a^b f(x, t) \, dt.$$

Show that F is smooth, and its derivatives can be computed by differentiating under the integral sign:

$$\frac{\partial F}{\partial x^i}(x) = \int_a^b \frac{\partial f}{\partial x^i}(x, t) \, dt.$$