
Math 445 Geometry for Teachers Spring 2008

Handout #2

This handout is meant to be read in place of Sections 6.6–6.10 in Venema. (We will come back and read
those sections later.) You should read these pages after reading Venema’s Section 6.5.

Consequences of the Euclidean Parallel Postulate

From this point on in our study of Euclidean geometry, we officially add the Euclidean Parallel Postulate to
our list of axioms. Thus, in addition to the six axioms of neutral geometry, we assume the following:

Euclidean Parallel Postulate. For every line ` and for every point P that does not lie on `, there is
exactly one line m such that P lies on m and m ‖ `.

As you learned in Venema’s Corollary 6.5.6, the axioms of neutral geometry are already sufficient to
prove that given a line ` and a point P /∈ `, there exists at least one line through P and parallel to `. Thus
the real content of the Euclidean Parallel Postulate is the statement that there is only one such line. We will
see in this handout and in Venema’s Chapter 7 that many familiar properties of Euclidean geometry follow
from this postulate.

The first of these properties is a converse to the Alternate Interior Angles Theorem. It is Euclid’s
Proposition 29, the first one for which he makes use of his fifth postulate.

Theorem H2.1 (Converse to the Alternate Interior Angles Theorem). If two parallel lines are cut
by a transversal, then both pairs of alternate interior angles are congruent.

Proof. Suppose ` and m are parallel lines cut by a transversal t, and let A and B denote the points where t
intersects ` and m, respectively. Choose either pair of alternate interior angles and label them ∠CAB and
∠ABD. (Fig. 1).
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Figure 1: Proof of the converse to the Alternate Interior Angles Theorem.

By the Angle Construction Postulate, there is a ray
−−→
BE on the same side of t as

−−→
BD that makes an

angle with
−−→
BA that is congruent to ∠CAB. It follows from the Alternate Interior Angles Theorem that

←→
BE

is parallel to `. By the Euclidean Parallel Postulate, therefore,
←→
BE is equal to m. Since D and E are on

the same side of t, this means that the rays
−−→
BE and

−−→
BD are equal, and therefore ∠ABD = ∠ABE. Since

∠ABE is congruent to ∠CAB by construction, we conclude that ∠ABD ∼= ∠CAB.

Corollary H2.2 (Converse to the Corresponding Angles Theorem). If two parallel lines are cut by
a transversal, then all four pairs of corresponding angles are congruent.

Proof. Exercise H2.1.

Corollary H2.3 (Converse to Corollary 6.5.5). If two parallel lines are cut by a transversal, then each
pair of interior angles lying on the same side of the transversal is supplementary.
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Proof. Exercise H2.2.

These theorems lead to a number of additional properties of parallel lines, most of which will probably
all seem familiar from your everyday experience. The proofs will be left as exercises.

The first result is a simple corollary of the Euclidean Parallel Postulate. Venema calls this Proclus’s

Axiom, because a late Greek mathematician named Proclus used it as one step in a “proof” of Euclid’s
fifth postulate (which turned out, like so many others, to be incorrect).

Theorem H2.4 (Proclus’s Lemma). If ` and `′ are parallel lines and t 6= ` is a line such that t intersects
`, then t also intersects `′.

Proof. Exercise H2.3.

The next theorem expresses the relationships between parallel and perpendicular lines in Euclidean
geometry.

Theorem H2.5. Suppose ` and `′ are parallel lines.

(a) If t is a transversal such that t ⊥ `, then t ⊥ `′.

(b) If m and n are lines such that m ⊥ ` and n ⊥ `′, then either m = n or m ‖ n.

Proof. Exercise H2.4.

Finally, we have the following result, which seems so “obvious” that you might be tempted to think that it
should follow immediately from the definition of parallel lines together with the axioms of neutral geometry.
But, as we will see later in the course, it cannot be proved without the Euclidean Parallel Postulate (or
something equivalent to it).

Theorem H2.6 (Transitivity of Parallelism). If ` ‖ m and m ‖ n, then either ` = n or ` ‖ n.

Proof. Exercise H2.5.

The Angle-Sum Theorem

The next theorem is one of the most important facts in Euclidean geometry. To state it concisely, we
introduce the following terminology. If A, B, and C are noncollinear points, the angle sum for 4ABC is
the sum of the measures of its interior angles. It is denoted by σ(4ABC). More specifically, the angle sum
is defined by the equation

σ(4ABC) = µ∠CAB + µ∠ABC + µ∠BCA.

Theorem H2.7 (Angle-Sum Theorem). If 4ABC is a triangle, then σ(4ABC) = 180◦.

Proof. By Corollary 6.5.6, there is a line m through A and parallel to
←→
BC (Fig. 2).

A
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Figure 2: Proof of the Angle Sum Theorem.

We can choose points D, E on m such that D is on the opposite side of
←→
AB from C, and E is on the opposite

side of
←→
AC from B. Then ∠ABC and ∠DAB form a pair of alternate interior angles for the transversal

←→
AB,
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and ∠BCA and ∠CAE form a pair of alternate interior angles for the transversal
←→
AC. It follows from the

converse to the Alternate Interior Angles Theorem that ∠ABC ∼= ∠DAB and ∠BCA ∼= ∠CAE.

It follows from the way we chose D and E that
−−→
AB is between

−−→
AD and

−→
AC (can you see how?). Therefore,

by the Betweenness Theorem for Rays, we have µ∠DAC = µ∠CAB +µ∠DAB. On the other hand, because
∠DAC and ∠CAE form a linear pair, the Linear Pair Theorem implies that they are supplementary. Thus,
combining all these results, we obtain

µ∠CAB + µ∠ABC + µ∠BCA = µ∠CAB + µ∠DAB + µ∠CAE

= µ∠DAC + µ∠CAE

= 180◦.

This completes the proof.

Corollary H2.8. In any triangle, the sum of the measures of any two angles is less than 180◦.

Proof. Since the measures of all three angles sum to 180◦, and the measure of each angle is positive, the sum
of any two of them must be strictly less than 180◦.

Corollary H2.9. In any triangle, at least two of the angles are acute.

Proof. Suppose at most one angle in a triangle is acute. Then the measures of two of the angles are at least
90◦, so the sum of their measures is at least 180◦, which contradicts the previous corollary.

Corollary H2.10. In any triangle, the measure of each exterior angle is equal to the sum of the measures
of the two remote interior angles.

Proof. This follows immediately from the Angle-Sum Theorem and the Linear Pair Theorem.

One important application of the angle-sum theorem is to elucidate the relationship between Euclid’s fifth
postulate and the Euclidean Parallel Postulate. Note that the fifth postulate actually stated by Euclid did
not refer explicitly to parallel lines; for that reason the postulate we call the Euclidean Parallel Postulate is
sometimes referred to as Playfair’s Postulate, after an eighteenth-century Scottish mathematician named
John Playfair, who proposed it as a more intuitive replacement for Euclid’s fifth.

The next theorem shows that Euclid’s fifth postulate follows from the Euclidean Parallel Postulate.

Theorem H2.11 (Euclid’s Postulate V). If ` and `′ are two lines cut by a transversal t in such a way
that the sum of the measures of the two interior angles on one side of t is less than 180◦, then ` and `′

intersect on that side of t.

Proof. First note that ` and `′ are not parallel, because if they were, Corollary H2.3 would imply that two
interior angles on the same side of t would have measures adding up to exactly 180◦. Thus there is a point
C where ` and `′ intersect. It remains only to show that C is on the same side of t as the two angles whose
measures add up to less than 180◦.

For definiteness, let us label the point where ` and t intersect as A, and the point where `′ and t intersect
as B. Denote the two interior angles at A as ∠1 and ∠2, and those at B as ∠3 and ∠4, with the labels
chosen so that ∠2 and ∠4 are on the same side of t as C, and ∠1 and ∠3 are on the other side (Fig. 3). Then
Corollary H2.8 applied to 4ABC implies that µ∠2 + µ∠4 < 180◦. On the other hand, because ∠1 and ∠2
form a linear pair, as do ∠3 and ∠4, a little algebra shows that

µ∠1 + µ∠3 = (180◦ − µ∠2) + (180◦ − µ∠4)

= 360◦ − (µ∠2 + µ∠4)

> 180◦.

Thus the two interior angles whose measures add up to less than 180◦ can only be ∠2 and ∠4, and C is on
the same side of t as these angles.
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Figure 3: Euclid’s fifth postulate.

In fact, the converse is also true: If in addition to the six postulates of Neutral Geometry, we assume
Euclid’s Postulate V instead of the Euclidean Parallel Postulate, then the Euclidean Parallel Postulate can
be proved as a theorem. (See Exercise H2.6.) Thus, in the presence of the axioms of neutral geometry, the
Euclidean Parallel Postulate and Euclid’s Postulate V are equivalent, meaning that each one implies the
other. When we go back to Venema’s Section 6.8, we will see that there are many more results that are also
equivalent to the Euclidean Parallel Postulate.

Quadrilaterals

So far in our study of geometry, we have concentrated most of our attention on triangles. Almost as important
as triangles are four-sided figures (quadrilaterals). In this section we describe some of the most important
properties of such figures in the Euclidean setting.

Suppose A, B, C, and D are four distinct points with the following properties:

(a) No three of the points are collinear;

(b) If two of the segments AB, BC , CD, and DA intersect, they do so only at a common endpoint.

Then the union of the four segments AB, BC , CD, and DA is called a quadrilateral, and is denoted by
�ABCD. Note that the order in which the points are listed is significant: If �ABCD is a quadrilateral,
then some reorderings of the vertices, such as �BCDA and �DCBA, represent the same quadrilateral (i.e.,
the union of the same four line segments), but other orderings, such as �ACBD, do not. In fact, �ACBD
might not represent a quadrilateral at all, because two of the segments might intersect at an interior point
(Fig. 5).
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Figure 4: A quadrilateral.
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Figure 5: Not a quadrilateral.

Here is some standard terminology regarding quadrilaterals. Suppose �ABCD is a quadrilateral.

• The four points A, B, C, and D are called the vertices of �ABCD.

• The four segments AB, BC, CD, and DA are called the sides of �ABCD.

• The two segments AC and BD are called the diagonals of �ABCD.
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• Any pair sides of �ABCD that do not intersect are called opposite sides.

• Any pair of sides of �ABCD that intersect at a common endpoint are called adjacent sides.

• The four angles formed by pairs of adjacent sides are called the angles of the quadrilateral.

• Two quadrilaterals are said to be congruent if there is a correspondence between their vertices such
that all four pairs of corresponding sides and all four pairs of corresponding angles are congruent.
The notation �ABCD ∼= �A′B′C ′D′ means that �ABCD is congruent to �A′B′C ′D′ under the
correspondence A↔ A′, B ↔ B′, C ↔ C ′, and D ↔ D′.

• �ABCD is a parallelogram if both pairs of opposite sides are parallel.

• �ABCD is a rectangle if all four of its angles are right angles.

• �ABCD is a rhombus if all four of its sides are congruent.

• �ABCD is a square if it is both a rhombus and a rectangle.

We wish to prove an analogue of the angle-sum theorem for quadrilaterals. It will say that the sum of the
“interior angles” of a quadrilateral is equal to 360◦. But there is a complication in defining interior angles
for quadrilaterals that did not arise in the case of triangles. To see why, consider the quadrilateral pictured
in Fig. 6. The two edges that meet at B form an angle, which is by definition one of the angles of �ABCD.

A

B

C
D

Figure 6: A nonconvex quadrilateral.

However, this angle is not the one we would want to consider as an “interior angle” of the quadrilateral.
It is possible to define what we mean by “interior” and “exterior” angles of a quadrilateral, and extend

our notion of angle measures in such a way that in a quadrilateral like that in Fig. 6, the “interior angle”
at B has a measure greater than 180◦; with these conventions, the angle-sum theorem we are about to state
would apply to such quadrilaterals as well. However, the definitions involve some intricate subtleties, and
for the purposes we have in mind it is simpler just to rule out quadrilaterals of this type.

For that reason, following Venema, we make the following definition. A convex quadrilateral is one
with the property that every vertex is contained in the interior of the angle formed by the two segments that
do not contain that vertex. For example, the quadrilateral in Fig. 4 is convex; however, the one in Fig. 6 is
not, because the vertex D is not in the interior of ∠ABC. Note that a convex quadrilateral is not the same
thing as a convex set, as defined in Definition 5.5.1. (The definitions are related – if we had taken the trouble
to define the “interior” of a quadrilateral, then we could show that �ABCD is a convex quadrilateral if and
only if its interior is a convex set; but we will not do so.)

Here is the main result in this section. If �ABCD is a convex quadrilateral, we define its angle sum,
denoted by σ(�ABCD), to be the sum of the measures of its four angles:

σ(�ABCD) = µ∠ABC + µ∠BCD + µ∠CDA + µ∠DAB.

Theorem H2.12 (Angle-Sum Theorem for Convex Quadrilaterals). If �ABCD is a convex quadri-
lateral, then σ(�ABCD) = 360◦.
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Proof. Exercise H2.7.

Because of the importance of the preceding theorem, it is useful to have some simple criteria for recog-
nizing when a quadrilateral is convex. The next few theorems give several such criteria.

Theorem H2.13. Every parallelogram is a convex quadrilateral.

Proof. Exercise H2.8.

Theorem H2.14 (Truncated Triangle Theorem). Suppose 4ABC is a triangle, and D and E are
points such that A ∗D ∗B and A ∗ E ∗ C. Then �BCED is a convex quadrilateral (Fig. 7).

A

B C

D
E

Figure 7: A truncated triangle is a convex quadrilateral.

Proof. Because E is between A and C, it follows from the Betweenness vs. Betweenness Theorem (Theorem

5.7.10) that
−−→
BE is between

−−→
BA and

−−→
BC, or in other words that E is in the interior of ∠DBC. The same

argument shows that D is in the interior of ∠ECB.
To show that C is in the interior of ∠BDE, we note that the Y-Theorem (Corollary 5.7.7) applied to the

ray
−→
AC shows that C is on the same side of

←→
DB as E. On the other hand, since A and B are on opposite

sides of
←→
DE, as are A and C, it follows that C is on the same side of

←→
DE as B. By definition, this means

that C is in the interior of ∠BDE. Exactly the same argument shows that B is in the interior of ∠CED,
and therefore �BCED is a convex quadrilateral.

The third criterion is actually a necessary and sufficient condition for convexity.

Theorem H2.15. The quadrilateral �ABCD is convex if and only if its diagonals have an interior point
in common (Fig. 8).

A

B

C
D

E

Figure 8: The diagonals of a convex quadrilateral have an interior point in common.

Proof. First assume that �ABCD is a quadrilateral whose diagonals AC and BD intersect in a point E
that is interior to both diagonals. Because E is between A and C, it follows from the Betweenness vs.

Betweenness Theorem (Theorem 5.7.10) that
−−→
BE is between

−−→
BA and

−−→
BC. Since D is a point on

−−→
BE, it is
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in the interior of ∠ABC by Corollary 5.7.8. The same argument shows that each of the other three vertices
is in the interior of the opposite angle.

Conversely, assume that �ABCD is a convex quadrilateral. Because D is in the interior of ∠ABC, it

follows from the Crossbar Theorem (applied to 4ABC) that
−−→
BD intersects the interior of AC. Call the

intersection point E. Similarly, because C is in the interior of ∠BAD, the Crossbar Theorem implies that
−→
AC intersects the interior of BD in a point E′. Because the lines

←→
AC and

←→
BD can have at most one point of

intersection, it follows that E = E′, and therefore E is the required common interior point of the diagonals
AC and BD.

Similar Triangles

Our last topic in this handout is a brief introduction to similar triangles. We say that two triangles are
similar if there is a correspondence between their vertices such that corresponding angles are congruent.
The notation 4ABC ∼ 4A′B′C ′ means that 4ABC is similar to 4A′B′C ′ under the correspondence
A↔ A′, B ↔ B′, and C ↔ C ′, or more specifically that

∠ABC ∼= ∠A′B′C ′, ∠BCA ∼= ∠B′C ′A′, ∠BCA ∼= ∠B′C ′A′.

The next theorem is a fundamental existence result in Euclidean geometry. Venema calls it Wallis’s

Postulate because the 17th-century English mathematician John Wallis proposed it as a replacement for
Euclid’s fifth postulate.

Theorem H2.16 (Wallis’s Lemma). If 4ABC is a triangle and DE is a segment, then there exists a
point F such that 4ABC ∼ 4DEF .

Proof. Given 4ABC and any segment DE, the Angle Construction Postulate ensures that there exists a

point G such that ∠EDG ∼= ∠BAC (Fig. 9). Similarly, there exists a point H on the same side of
←→
DE

A B

C

D E

F

G
H

Figure 9: Proof of Wallis’s Lemma.

as G such that ∠DEH ∼= ∠ABC. Because the measures of ∠ABC and ∠BAC sum to less than 180◦ by
Corollary H2.8, it follows that the measures of ∠DEH and ∠EDG also sum to less than 180◦. By Euclid’s

Postulate V, therefore, there is a point F on the same side of
←→
DE as G and H where the lines

←→
DG and

←→
EH

intersect. By the angle-sum theorem and subtraction,

µ∠DFE = 180◦ − (µ∠DEF + µ∠EDF ) = 180◦ − (µ∠ABC + µ∠BAC) = µ∠BCA.

Thus 4ABC ∼ 4DEF by definition of similar triangles.
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Exercises

H2.1. Prove the converse to the Corresponding Angles Theorem (Corollary H2.2).

H2.2. Prove the converse to Corollary 6.5.5 (Corollary H2.3).

H2.3. Prove Proclus’s Lemma (Theorem H2.4).

H2.4. Prove Theorem H2.5.

H2.5. Prove the transitivity of parallelism (Theorem H2.6).

H2.6. Prove that the six axioms of Neutral Geometry plus Euclid’s Postulate V imply the Euclidean Parallel
Postulate.

H2.7. Prove the Angle-Sum Theorem for Convex Quadrilaterals (Theorem H2.12). Where do you use the
hypothesis that the quadrilateral is convex?

H2.8. Prove that every parallelogram is a convex quadrilateral (Theorem H2.13).

H2.9. Prove that every rectangle is a parallelogram.
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