Corrections to

Axiomatic Geometry

by John M. Lee

August 20, 2009
(7/17/09) Page 9, four lines above the section heading: Change "Proposition I.10" to "Proposition I.16."
(7/27/09) Page 9, last line: Change "comprise" to "constitute."
(8/14/09) Page 11, first paragraph, last line: "because" is misspelled.
(7/27/09) Page 13, next to last line: Change "exterior angle theorem" to "exterior angle inequality."
(7/16/09) Page between Chapters 1 and 2: This page should be numbered 16, not 18.
(7/6/09) Page 21, last line: Change $\{5,6,7\}$ to $\{1,5,6\}$. [Alexei]
(7/10/09) Page 26, displayed equations just below (2.1): This line should be numbered (2.2). Also, the numerator of the first equation should be $y_{2}-y_{1}$, not $y_{2}-y_{2}$. Thus the equation should read

$$
\begin{equation*}
A=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \quad B=-1, \quad C=y_{1}-\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right) x_{1} . \tag{2.2}
\end{equation*}
$$

(7/10/09) Page 26, middle of the page: Replace the paragraph starting "To prove uniqueness" with the following:

To prove uniqueness, suppose there is another equation $A^{\prime} x+B^{\prime} y+C^{\prime}=0$ satisfied by both $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$, with A^{\prime} and B^{\prime} not both zero. The basic idea for proving uniqueness is that both lines have to have the same slope, namely $\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$; we will use this to show that one equation is a nonzero multiple of the other, i.e., that there is a nonzero constant k such that $A^{\prime}=k A$, $B^{\prime}=k B$, and $C^{\prime}=k C$.

Our assumption means that the following two equations are satisfied:

$$
\begin{aligned}
& A^{\prime} x_{1}+B^{\prime} y_{1}+C^{\prime}=0, \\
& A^{\prime} x_{2}+B^{\prime} y_{2}+C^{\prime}=0 .
\end{aligned}
$$

Subtracting the first equation from the second, we obtain $A^{\prime}\left(x_{2}-x_{1}\right)+B^{\prime}\left(y_{2}-y_{1}\right)=0$, which implies

$$
\begin{equation*}
A^{\prime}=-B^{\prime} \frac{y_{2}-y_{1}}{x_{2}-x_{1}} . \tag{2.3}
\end{equation*}
$$

If B^{\prime} were zero, this would imply $A^{\prime}=0$, which we are assuming is not the case; thus $B^{\prime} \neq 0$.
We can also do exactly the same computation with the equation $A x+B y+C=0$ that we constructed earlier, where A, B, C are defined by (2.2). This leads to

$$
\begin{equation*}
A=-B \frac{y_{2}-y_{1}}{x_{2}-x_{1}}, \tag{2.4}
\end{equation*}
$$

from which we can also conclude that $B \neq 0$.
Now let $k=B^{\prime} / B$. Then obviously $B^{\prime}=k B$, and equations (2.3) and (2.4) together yield $A^{\prime}=k A$. Since $\left(x_{1}, y_{1}\right)$ satisfies both equations, we have

$$
\begin{array}{r}
A x_{1}+B y_{1}+C=0, \\
k A x_{1}+k B y_{1}+C^{\prime}=0 .
\end{array}
$$

Multiplying the first equation by k and subtracting the second, we obtain $k C-C^{\prime}=0$, or $C^{\prime}=k C$. This completes the proof that our new equation is a nonzero constant multiple of the original one, so the two equations have the same solution set and therefore represent the same line.
(7/20/09) Page 33, next to last line: Change "the point" to "that point." [Amy]
(7/19/09) Page 37, fourth paragraph: Delete redundant "subject." [Neesha]
(7/16/09) Page 41, two lines above Postulate 5: Change "it said" to "it is said."
(7/20/09) Page 41, last paragraph, first line: Change "any function" to "any bijective function." [Lindsay]
(7/22/09) page 43, proof of Theorem 4.8, last sentence: Change that sentence to "Because f is a function, $P=Q$ implies $f(P)=f(Q)$; and because f is injective, the converse holds as well. This proves (b) and (c)."
(7/17/09) Page 45, statement of Corollary 4.15: Change $f(A) * f(B) * f(B)$ to $f(A) * f(B) * f(C)$. [Cindy]
(7/17/09) Page 50, displayed equation (5.2): Change $f(A)<f(B)$ to $f(A)>f(B)$. [Cindy]
$(7 / 17 / 09)$ Page 50, proof of Lemma 5.2, first line: Change "suppose first that $f(A)>f(B)$ " to "suppose first that $f(A)<f(B)$."
(7/17/09) Page 50, proof of Lemma 5.2, third equivalence: The reason should be "(hypothesis and Corollary 4.15)" instead of "(definition of betweenness)."
(7/24/09) Page 56, third line of the "Opposite Rays" section: Change the sentence beginning "Two rays" to the following: "Two rays are said to be collinear rays if there is a line that contains both of them, and they are said to be opposite rays if they have the same endpoint and their union is a line." [Jupiter]
(8/20/09) Page 58, paragraph just above the two figures: "together will" should be "together with." [Cindy]
(7/24/09) Page 67, statement of Theorem 6.3: should stipulate that O is the endpoint of a.
(7/26/09) Page 67, first paragraph of the "Betweenness of Rays" section, line 4: Change $g(s)$ to $g(a)$. [Michael]
(7/27/09) Page 70, proof of Theorem 6.9, second sentence: Replace that sentence by the following three sentences: "Because the hypothesis implies $A \notin \overleftarrow{O B}$, it follows that A, O, B are noncollinear, so $\angle A O B$ is proper. Similarly, since $\overleftrightarrow{O A}=\overleftrightarrow{O C^{\prime}}$, the points $\underline{B, O}, C^{\prime}$ are noncollinear, so $\angle B O C^{\prime}$ is proper. The angles $\angle A O B$ and $B O C^{\prime}$ share the common side $\overrightarrow{O B}$, so they do in fact form a linear pair." [Colin]
(7/26/09) Page 71, statement of Corollary 6.14: The first sentence should read "Suppose a, b, and c are three rays that all lie in some half-rotation, and no two of which are collinear." [Anne]
(7/27/09) Page 72, third paragraph: Delete the phrase "such that $\angle A O B, \angle B O C$, and $\angle C O D$ are all proper angles. [Cindy]
(7/27/09) Page 74, second paragraph, line 2: after "also in the interior," insert "of $\angle A O C$."
(7/27/09) Page 74, statement of Lemma 6.22: Change the statement to "Suppose $\angle A O C$ is a proper angle and $\overrightarrow{O B}$ is a ray that lies in the interior of $\angle A O C$. Then $\overrightarrow{O A} * \overrightarrow{O B} * \overrightarrow{O C}$." [Amy]
(7/27/09) Page 77, statement of Theorem 6.27: After "in some half-rotation," insert "and no two of which are collinear."
(7/27/09) Page 81, proof of the crossbar theorem: The proof should begin with the statement "Suppose $\triangle A B C$ is a triangle and $\overrightarrow{A D}$ is a ray between $\overrightarrow{A B}$ and $\overrightarrow{A C}$." [Anne]
(7/31/09) Page 88, last line: Change "without generality" to "without loss of generality."
(7/31/09) Page 98, second paragraph, next-to-last line: Insert a period after "components."
(7/31/09) Page 99, equation (8.2): Change $\mu \angle A O B$ to $m \angle A O B$. [Anne]
(8/4/09) Page 112, Fig. 9.2: The horizontal line should be labeled ℓ. [Anne]
(8/20/09) Page 111, third paragraph, first line: Delete extra "to" near the end of the line. [Amy]
(8/3/09) Page 115, second paragraph: Just before the last sentence of the paragraph, add "It is easy to check that all closest points in S are the same distance from P." Then in the last sentence, change the final phrase from "from P to the closest point in S " to "from P to any of the closest point(s) in S."
(8/3/09) Page 115, statement of Theorem 9.10: In the first sentence, add the word "proper": "Suppose $\angle A O B$ is a proper angle . . ."
(8/3/09) Page 120, Problem 9.6: Change "the supplementary angles theorem" to "the consecutive interior angles theorem."
(8/20/09) Page 122, second line: Change the last clause to "and no two of the segments intersect except at a common endpoint." [Cindy]
(8/5/09) Page 124, third line from bottom: After "correspondence between their vertices," insert: "such that consecutive vertices correspond to consecutive vertices, and"
(8/20/09) Page 134, statement of Theorem 10.15: Remove "and only if" from each of the four parts. [Cindy, Alexei]
(8/5/09) Page 134, Fig. 10.20: $\angle D$ and $\angle H$ should not be marked congruent in this diagram.
(8/5/09) Page 134, proof of Theorem 10.16, just before the last sentence: Insert "The two triangle congruences imply $\angle A D B \cong \angle E H F$ and $\angle B D C \cong \angle F H G$, so $\angle A D C \cong \angle E H G$."
(8/5/09) Page after \#135: This page should be numbered 136.
(8/20/09) Page 148, second to last line: Change $\triangle X Q F$ to $\triangle X Q G$. [Alexei]
(8/20/09) Page 149, third line: Insert missing "we": "as we will see later." [Amy]
(8/7/09) Page 150, displayed equation near the bottom: Change μ to m (three times).
(8/20/09) Page 151, equation (12.1): Change μ to m (three times). [Alexei]
(8/20/09) Page 152, last set of displayed equations and the paragraph above them: Change μ to m (eight times). [Alexei]
(8/20/09) Page 153, statement of Theorem 12.18: Change 180° to 180 . [Michael]
(8/20/09) Page 153, last displayed equations: Change μ to m (six times). [Alexei]
(8/7/09) Page 154, last line: After "exterior angles," insert "(one at each vertex)." [Cindy]
(8/7/09) Page 156, line above Theorem 12.30: Change"Theorem 12.27" to "Theorem 12.28."
(8/20/09) Page 162, third line: Change " A and E " to " A and B ": "...implies that A and B are on opposite sides of $\overleftrightarrow{E G} ; \ldots$.." [Amy]
(8/20/09) Page 164, last two lines before Theorem 13.7: In these two lines, interchange the two inequalities $s(x)<x^{2}$ and $s(x)>x^{2}$. [Amy]
(8/20/09) Page 181, Step 2, second paragraph, second line: Change $\operatorname{HR}(A, E, C)$ to $\operatorname{HR}(\overrightarrow{A E}, C)$. [Michael] (8/20/09) Page 213, third line from the bottom: Delete extra "that." [Kathryn]

