
Axioms of Neutral Geometry

The Existence Postulate. The collection of all points forms a nonempty set. There is more than one point in that
set.

The Incidence Postulate. Every line is a set of points. For every pair of distinct points A and B there is exactly
one line ` such that A ∈ ` and B ∈ `.

The Ruler Postulate. For every pair of points P and Q there exists a real number PQ, called the distance from

P to Q. For each line ` there is a one-to-one correspondence from ` to R such that if P and Q are points on the
line that correspond to the real numbers x and y, respectively, then PQ = |x− y|.

The Plane Separation Postulate. For every line `, the points that do not lie on ` form two disjoint, nonempty
sets H1 and H2, called half-planes bounded by ` or sides of `, such that the following conditions are satisfied.

1. Each of H1 and H2 is convex.

2. If P ∈ H1 and Q ∈ H2, then PQ intersects `.

The Protractor Postulate. For every angle ∠ABC there exists a real number µ∠ABC, called the measure

of ∠∠∠ABC. For every half-rotation HR(A, O, B), there is a one-to-one correspondence g from HR(A, O, B) to the

interval [0, 180] ⊂ R, which sends
−→
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−→
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The Side-Angle-Side Postulate. If 4ABC and 4DEF are two triangles such that AB ∼= DE, ∠ABC ∼= ∠DEF ,
and BC ∼= EF , then 4ABC ∼= 4DEF .

The Neutral Area Postulate. Associated with each polygonal region R there is a nonnegative number α(R), called
the area of R, such that the following conditions are satisfied.

1. (Congruence) If two triangles are congruent, then their associated triangular regions have equal areas.

2. (Additivity) If R is the union of two nonoverlapping polygonal regions R1 and R2, then α(R) =
α(R1) + α(R2).

Theorems of Neutral Geometry

Theorem 5.3.7. If ` and m are two distinct, nonparallel lines, then there exists exactly one point P such that P lies
on both ` and m.

Theorem 5.4.6. If P and Q are any two points, then

1. PQ = QP ,

2. PQ ≥ 0, and

3. PQ = 0 if and only if P = Q.

Corollary 5.4.7. A ∗ C ∗ B if and only if B ∗ C ∗A.

Theorem 5.4.14 (The Ruler Placement Theorem). For every pair of distinct points P and Q, there is a

coordinate function f :
←→
PQ→ R such that f(P ) = 0 and f(Q) > 0.

Proposition 5.5.4. Let ` be a line and let A and B be points that do not lie on `. The points A and B are on the
same side of ` if and only if AB ∩ ` = ∅. The points A and B are on opposite sides of ` if and only if AB ∩ ` 6= ∅.

Theorem 5.5.10 (Pasch’s Theorem). Let 4ABC be a triangle and let ` be a line such that none of A, B, and C
lies on `. If ` intersects AB, then ` also intersects either AC or BC.

Theorem A.1 (Betweenness Theorem for Points). Suppose A, B, and C are distinct points all lying on a
single line `. Then the following statements are equivalent:



(a) AB + BC = AC (i.e., A ∗ B ∗ C).

(b) B lies in the interior of the line segment AC.

(c) B lies on the ray
−→
AC and AB < AC.

(d) For any coordinate function f : `→ R, the coordinate f(B) is between f(A) and f(C).

Corollary A.2. If A, B, and C are three distinct collinear points, then exactly one of them lies between the other
two.

Theorem A.3 (Existence and Uniqueness of Midpoints) Every line segment has a unique midpoint.

Theorem A.4 (Ray Theorem) Suppose A and B are distinct points, and f is a coordinate function for the line
←→
AB satisfying f(A) = 0. Then a point P ∈

←→
AB is an interior point of

−→
AB if and only if its coordinate has the same

sign as that of B.

Corollary A.5. If A and B are distinct points, and f is a coordinate function for the line
←→
AB satisfying f(A) = 0

and f(B) > 0, then
−→
AB = {P ∈

←→
AB : f(P ) ≥ 0}.

Corollary A.6. If A, B, and C are distinct collinear points, then
−→
AB and

−→
AC are opposite rays if and only if

B ∗ A ∗C, and otherwise they are equal.

Corollary A.7 (Segment Construction Theorem) If AB is a line segment and
−−→
CD is a ray, there is a unique

interior point E ∈
−−→
CD such that CE ∼= AB.

Theorem A.8 (The Y-Theorem) Suppose ` is a line, A is a point on `, and B is a point not on `. Then every

interior point of
−→
AB is on the same side of ` as B.

Theorem A.10. If ∠ABC is any angle, then 0◦ < µ∠ABC < 180◦.

Theorem A.11 (Angle Construction Theorem) Let A, O, and B be noncollinear points. For every real number

m such that 0 < m < 180, there is a unique ray
−−→
OC with vertex O and lying on the same side of

←→
OA as B such that

µ∠AOC = m◦.

Theorem A.12 (Linear Pair Theorem) If two angles form a linear pair, they are supplementary.

Theorem A.13 (Vertical Angles Theorem) Vertical angles are congruent.

Theorem A.14 (Four Right Angles Theorem) If ` ⊥ m, then ` and m form four right angles.

Theorem A.15 (Existence and Uniqueness of Perpendicular Bisectors) Every line segment has a unique
perpendicular bisector.

Theorem A.16 (Betweenness vs. Betweenness) Let A, O, and C be three noncollinear points and let B be a

point on the line
←→
AC. The point B is between points A and C if and only if the ray

−−→
OB is between rays

−→
OA and

−−→
OC.

Theorem A.18 (Betweenness Theorem for Rays) Suppose O, A, B, and C are four distinct points such that no

two of the rays
−→
OA,

−−→
OB, and

−−→
OC are equal and no two are opposite. Then the following statements are equivalent:

(a) µ∠AOB + µ∠BOC = µ∠AOC.

(b)
−−→
OB lies in the interior of ∠AOC (i.e.,

−→
OA ∗

−−→
OB ∗

−−→
OC).

(c)
−−→
OB lies in the half-rotation HR(A, O, C) and µ∠AOB < µ∠AOC.

(d)
−→
OA,

−−→
OB, and

−−→
OC all lie in some half-rotation, and if g is the coordinate function cooresponding to any such

half-rotation, the coordinate g
`−−→
OB

´

is between g
`−→
OA

´

and g
`−−→
OC

´

.

Corollary A.19. If
−→
OA,

−−→
OB, and

−−→
OC are three rays that all lie on one half-rotation and such that no two are equal

and no two are opposite, then exactly one is between the other two.

Corollary from class. If
−→
OA ∗

−−→
OB ∗

−−→
OC , then A and B are on opposite sides of

←→
OC .



Theorem A.20 (Existence and Uniqueness of Angle Bisectors) Every angle has a unique angle bisector.

Theorem A.21 (The Crossbar Theorem) If 4ABC is a triangle and
−−→
AD is a ray between

−→
AB and

−→
AC, then

−−→
AD intersects BC.

Theorem 5.8.5 (Isosceles Triangle Theorem). If 4ABC is a triangle and AB ∼= AC, then ∠ABC ∼= ∠ACB.

Theorem 6.2.1 (ASA). If 4ABC and 4DEF are two triangles such that ∠CAB ∼= ∠FDE, AB ∼= DE, and
∠ABC ∼= ∠DEF , then 4ABC ∼=4DEF .

Theorem 6.2.2 (Converse to the Isosceles Triangle Theorem). If 4ABC is a triangle such that ∠ABC ∼=
∠ACB, then AB ∼= AC.

Exercise 6.3 (Construction of Perpendiculars). For every line ` and for every point P that lies on `, there
exists a unique line m such that P lies on m and m ⊥ `.

Theorem 6.2.3 (Existence of Perpendicular from an External Point). For every line ` and for every external
point P , there exists a line m such that P lies on m and m ⊥ `.

Theorem 6.2.4 (Copying a Triangle). If 4ABC is a triangle, DE is a segment such that DE ∼= AB, and H is

a half-plane bounded by
←→
DE, then there is a unique point F ∈ H such that 4DEF ∼=4ABC.

Theorem 6.3.2 (Exterior Angle Theorem). The measure of an exterior angle for a triangle is strictly greater
than the measure of either remote interior angle.

Corollary 6.3.3 (Uniqueness of Perpendiculars). For every line ` and for every external point P , there exists
exactly one line m such that P lies on m and m ⊥ `.

Theorem 6.3.4 (AAS). If 4ABC and 4DEF are two triangles such that ∠ABC ∼= ∠DEF , ∠BCA ∼= ∠EFD,
and AC ∼= DF , then 4ABC ∼= 4DEF .

Theorem 6.3.6 (Hypotenuse-Leg Theorem). If 4ABC and 4DEF are two right triangles with right angles at
the vertices C and F , respectively, AB ∼= DE, and BC ∼= EF , then 4ABC ∼=4DEF .

Theorem 6.3.7 (SSS). If 4ABC and 4DEF are two triangles such that AB ∼= DE, BC ∼= EF , CA ∼= FD, then
4ABC ∼=4DEF .

Theorem 6.4.1 (Scalene Inequality). Let A, B, and C be three noncollinear points. Then AB > BC if and only
if µ(∠ACB) > µ(∠BAC).

Theorem 6.4.2 (Triangle Inequality). If A, B, and C are three noncollinear points, then AC < AB + BC.

Theorem 6.4.3 (Hinge Theorem). If 4ABC and 4DEF are two triangles such that AB = DE, AC = DF , and
µ(∠BAC) < µ(∠EDF ), then BC < EF .

Theorem 6.4.4. Let ` be a line, let P be an external point, and let F be the foot of the perpendicular from P to `.
If R is any point on line ` that is different from F , then PR > PF .

Lemma from class (Interior Foot Lemma). In 4ABC, if ∠A and ∠B are acute, then the foot of the perpen-

dicular from C to
←→
AB lies in the interior of

←→
AB.

Theorem 6.4.6 (Pointwise Characterization of Angle Bisector). Let A, B, and C be three noncollinear
points and let P be a point in the interior of ∠BAC. Then P lies on the angle bisector of ∠BAC if and only if

d(P,
←→
AB) = d(P,

←→
AC).

Theorem 6.4.7 (Pointwise Characterization of Perpendicular Bisector). Let A and B be distinct points. A
point P lies on the perpendicular bisector of AB if and only if PA = PB.

Theorem 6.5.2 (Alternate Interior Angles Theorem). If ` and `′ are two lines cut by a transversal t in such
a way that a pair of alternate interior angles is congruent, then ` is parallel to `′.

Corollary 6.5.4 (Corresponding Angles Theorem). If ` and `′ are two lines cut by a transversal t in such a
way that two corresponding angles are congruent, then ` is parallel to `′.



Corollary 6.5.5 (Supplementary Angles Theorem). If ` and `′ are two lines cut by a transversal t in such a
way that two nonalternating angles on the same side of t are supplements, then ` is parallel to `′.

Corollary 6.5.6 (Existence of Parallels). If ` is a line and P is an external point, then there is a line m such
that P lies on m and m is parallel to `.

Addendum (Existence of a Parallel with a Common Perpendicular). If ` is a line and P is an external
point, then there is a line m that is parallel to ` and contains P , and a line t through P that is a common perpendicular
for ` and m.

Corollary 6.5.8. (Common Perpendicular Theorem). If ` and `′ are distinct lines that admit a common
perpendicular, then they are parallel.

Theorem 6.6.2 (Saccheri–Legendre Theorem). If 4ABC is any triangle, then σ(4ABC) ≤ 180◦.

Theorem 6.9.2 (Additivity of Defect).

1. If 4ABC is a triangle and E is a point in the interior of BC, then δ(4ABC) = δ(4ABE) + δ(4ECA).

2. If �ABCD is a convex quadrilateral, then δ(�ABCD) = δ(4ABC) + δ(4ACD).

Theorem 6.9.10 (Properties of Saccheri quadrilaterals). If �ABCD is a Saccheri quadrilateral with base AB,
then

1. the diagonals AC and BD are congruent,

2. the summit angles ∠BCD and ∠ADC are congruent,

3. the segment joining the midpoint of AB to the midpoint of CD is perpendicular to both AB and CD,

4. �ABCD is a parallelogram,

5. �ABCD is a convex quadrilateral,

6. the summit angles ∠BCD and ∠ADC are acute.

Theorem 6.9.11 (Properties of Lambert quadrilaterals). If �ABCD is a Lambert quadrilateral with right
angles at vertices A, B, and C, then

1. �ABCD is a parallelogram,

2. �ABCD is a convex quadrilateral, and

3. ∠ADC is acute.

Theorem 6.10.1 (The Universal Hyperbolic Theorem). In every model of neutral geometry, either the Eu-
clidean parallel postulate or the hyperbolic parallel postulate holds.

Axioms of Euclidean Geometry

The Seven Postulates of Neutral Geometry.

The Euclidean Parallel Postulate. For every line ` and for every point P that does not lie on `, there is exactly
one line m such that P lies on m and m ‖ `.

The Euclidean Area Postulate. If R is a rectangular region, then α(R) = length(R) × width(R).

Theorems of Euclidean Geometry

(All the theorems of neutral geometry are valid in Euclidean geometry.)

Theorem B.2 (Converse to the Alternate Interior Angles Theorem). If two parallel lines are cut by a
transversal, then both pairs of alternate interior angles are congruent.

Corollary B.3 (Converse to the Corresponding Angles Theorem). If two parallel lines are cut by a transver-
sal, then all four pairs of corresponding angles are congruent.



Corollary B.4 (Converse to the Supplementary Angles Theorem). If two parallel lines are cut by a transver-
sal, then each pair of interior angles lying on the same side of the transversal is supplementary.

Theorem B.5 (Proclus’s Lemma). If ` and `′ are parallel lines and t 6= ` is a line such that t intersects `, then t
also intersects `′.

Theorem B.6 (Parallels and Perpendiculars) Suppose ` and `′ are parallel lines.

(a) If t is a transversal such that t ⊥ `, then t ⊥ `′.

(b) If m and m′ are distinct lines such that m ⊥ ` and m′ ⊥ `′, then m ‖m′.

Theorem B.7 (Transitivity of Parallelism). If `, m, and n are distinct lines such that ` ‖ m and m ‖ n, then
` ‖ n.

Theorem B.8 (Angle-Sum Theorem). If 4ABC is a triangle, then σ(4ABC) = 180◦.

Corollary B.9. In any triangle, the sum of the measures of any two interior angles is less than 180◦.

Corollary B.10. In any triangle, at least two of the angles are acute.

Corollary B.11. In any triangle, the measure of each exterior angle is equal to the sum of the measures of the two
remote interior angles.

Theorem B.12 (The Euclidean Parallel Postulate Implies Euclid’s Postulate V) If ` and `′ are two lines
cut by a transversal t in such a way that the sum of the measures of the two interior angles on one side of t is less
than 180◦, then ` and `′ intersect on that side of t.

Theorem B.13 (Euclid’s Postulate V Implies the Euclidean Parallel Postulate). The six axioms of Neutral
Geometry together with Euclid’s Postulate V imply the Euclidean Parallel Postulate.

Theorem B.14 (Angle-Sum Theorem for Convex Quadrilaterals). If �ABCD is a convex quadrilateral,
then σ(�ABCD) = 360◦.

Theorem B.15 (Truncated Triangle Theorem). Suppose 4ABC is a triangle, and D and E are points such
that A ∗D ∗B and A ∗ E ∗C. Then �BCED is a convex quadrilateral.

Theorem from class. A quadrilateral is convex if and only if both pairs of opposite sides are semiparallel.

Theorem B.16. Every trapezoid is a convex quadrilateral.

Corollary B.17. Every parallelogram is a convex quadrilateral.

Theorem B.18. A quadrilateral is convex if and only if its diagonals intersect. If they do intersect, then the
intersection point is an interior point of both diagonals.

Theorem B.19. Every parallelogram has the following properties.

(a) Both pairs of opposite sides are congruent.

(b) Both pairs of opposite angles are congruent.

(c) Its diagonals bisect each other.

Theorem B.20. Every rectangle has the following properties.

(a) It is a parallelogram.

(b) Its diagonals are congruent.

Theorem B.21. Every rhombus has the following properties.

(a) It is a parallelogram.

(b) Its diagonals intersect perpendicularly.



Theorem 9.1.7. If 4ABC is a triangle and E is a point on the interior of AC, then NABC = NABE ∪NEBC.
Furthermore, NABE and NEBC are nonoverlapping regions. Thus α(4ABC) = α(4ABE) + α(4EBC).

Exercise 9.3. Let �ABCD be a convex quadrilateral. Then NABC ∪NCDA = NDAB ∪NBCD, and each pair
of triangles is nonoverlapping. Thus α(�ABCD) = α(4ABC) + α(4CDA) = α(4DAB) + α(4BCD).

Theorem 9.2.5. The area of a triangular region is one-half the length of the base times the height.

Exercise 9.8. The area of a parallelogram is the length of the base times the height.

Exercise 9.11. The area of a trapezoid is the height times the average of the lengths of the bases.

Theorem 9.2.8 (The Pythagorean Theorem). Suppose 4ABC is a right triangle with right angle ∠C, and let
a, b, and c denote the lengths of the sides opposite A, B, and C, respectively. Then a2 + b2 = c2.

Theorem C.12 (Converse to the Pythagorean Theorem). Suppose 4ABC is a triangle, and let a, b, and c
denote the lengths of the sides opposite A, B, and C, respectively. If a2 + b2 = c2, then ∠C is a right angle.

Theorem C.1 (AA Similarity Theorem). If4ABC and4DEF are triangles such that ∠A ∼= ∠D and ∠B ∼= ∠E,
then 4ABC ∼ 4DEF .

Theorem C.2 (Similar Triangle Construction Theorem). If 4ABC is a triangle, DE is a segment, and H is

a half-plane bounded by
←→
DE, then there is a unique point F ∈ H such that 4ABC ∼ 4DEF .

Lemma C.3 (Sliding Lemma). Suppose 4ABC and 4A′BC are two distinct triangles that have a common side

BC, such that
←−→
AA′ ‖

←→
BC. Then α(4ABC) = α(4A′BC).

Lemma C.4. Suppose 4ABC is a triangle, and D is a point such that B ∗D ∗ C. Then

α(4ABD)

α(4ABC)
=

BD

BC
.

Theorem C.5 (The Side-Splitter Theorem). Suppose 4ABC is a triangle, and ` is a line parallel to
←→
BC that

intersects AB at an interior point D. Then ` also intersects AC at an interior point E, and

AD

AB
=

AE

AC
.

Theorem C.6 (Fundamental Theorem on Similar Triangles). If 4ABC ∼ 4DEF , then

AB

DE
=

AC

DF
=

BC

EF
. (0.1)

Corollary C.7. If 4ABC ∼ 4DEF , then there is a positive number r such that

AB = r ·DE, AC = r ·DF, BC = r ·EF.

Theorem C.8 (SAS Similarity Theorem). If 4ABC and 4DEF are triangles such that ∠A ∼= ∠D and
AB/DE = AC/DF , then 4ABC ∼ 4DEF .

Theorem C.9 (SSS Similarity Theorem). If 4ABC and 4DEF are triangles such that AB/DE = AC/DF =
BC/EF , then 4ABC ∼ 4DEF .

Theorem C.10 (Area Scaling Theorem). If two triangles are similar, then the ratio of their areas is the square
of the ratio of any two corresponding sides; that is, if 4ABC ∼ 4DEF and AB = r · DE, then α(4ABC) =
r2 · α(4DEF ).

Theorem 10.2.1. If γ is a circle and ` is a line, then the number of points in γ ∩ ` is 0, 1, or 2.

Theorem 10.2.4 (Tangent Line Theorem). Let t be a line, γ = C(O, r) a circle, and P a point of t∩ γ. The line

t is tangent to the circle γ at the point P if and only if
←→
OP ⊥ t.



Theorem 10.2.5. If γ is a circle and t is a tangent line that meets γ at P , then every point of t except for P is
outside γ.

Theorem 10.2.6 (Secant Line Theorem). If γ = C(O, r) is a circle and ` is a secant line that intersects γ at
distinct points P and Q, then O lies on the perpendicular bisector of the chord PQ.

Theorem 10.2.7. If γ is a circle and ` is a secant line such that ` intersects γ at points P and Q, then every point
on the interior of PQ is inside γ and every point of ` r PQ is outside γ.

Theorem from class. If γ and γ′ are two distinct circles, then the number of points in γ ∩ γ′ is 0, 1, or 2.

Theorem 10.2.12 (Tangent Circles Theorem). If the circles γ1 = C(O1, r1) and γ2 = C(O2, r2) are tangent at
P , then the centers O1 and O2 are distinct and the three points O1, O2, and P are collinear. Furthermore, the circles
share a common tangent line at P .

Theorem from class (Circle-Line Theorem). If γ is a circle and ` is a line that contains a point inside γ, then
` is a secant line for γ.

Theorem from class (Converse to the Triangle Inequality). If a, b, and c are three positive real numbers such
that each one is less than the sum of the other two, then there exists a triangle whose side lengths are a, b, and c.

Theorem from class (Two Circles Theorem). Let γ and γ′ be two distinct circles. If there exists a point that
lies on γ′ and is inside γ, and there exists another point that lies on γ′ and is outside γ, then γ∩γ′ consists of exactly
two points.

Theorem 10.3.2 (Circumscribed Circle Theorem). Every Euclidean triangle has a unique circumscribed circle.
The three perpendicular bisectors of the sides of any triangle are concurrent and meet at the circumcenter of the
triangle.

Theorem 10.3.8 (Inscribed Circle Theorem). Every triangle has a unique inscribed circle. The bisectors of the
interior angles in any triangle are concurrent and the point of concurrency is the incenter of the triangle.

Theorem 10.4.1. Let 4ABC be a triangle and let M be the midpoint of AB. If AM = MC, then ∠ACB is a right
angle.

Corollary 10.4.2 (An angle inscribed in a semicircle is a right angle). If the vertices of triangle 4ABC lie
on a circle and AB is a diameter of that circle, then ∠ACB is a right angle.

Theorem 10.4.3. Let 4ABC be a triangle and let M be the midpoint of AB. If ∠ACB is a right angle, then
AM = MC.

Corollary 10.4.4 (Converse to Corollary 10.4.2). If ∠ACB is a right angle, then AB is a diameter of the circle
that circumscribes 4ABC.

Theorem 10.4.5 (The 30-60-90 Theorem). If the interior angles in triangle 4ABC measure 30◦, 60◦, and 90◦,
then the length of the side opposite the 30◦ angle is one half the length of the hypotenuse.

Theorem 10.4.6 (Converse to the 30-60-90 Theorem). If 4ABC is a right triangle such that the length of
one leg is one-half the length of the hypotenuse, then the interior angles of the triangle measure 30◦, 60◦, and 90◦.

Theorem 10.6.6. If C(O, R) and C(O′, r′) are two circles, and C, C′ are their respective circumferences, then
C/r = C′/r′. Thus there is a universal constant π such that every circle of radius r has circumference 2πr.

Theorem from class. If C(O, R) and C(O′, r′) are two circles, and A and A′ are their respective areas, then
A/r2 = A′/r′

2
. Thus there is a universal constant k such that every circle of radius r has area kr2.

Theorem 10.6.11 (Archimedes’ Theorem). If γ is a circle of radius r, C is the circumference of γ, and A is
the area of the associated circular region, then A = 1

2
rC.

Corollary 10.6.12. The area of every circle of radius r is πr2.

Theorem 12.2.6. The composition of two isometries is an isometry. The inverse of an isometry is an isometry.



Theorem 12.2.7 (Properties of Isometries). Let T : P → P be an isometry. Then T preserves the following
geometric relationships.

1. T preserves collinearity; that is, if P , Q, and R are three collinear points, then T (P ), T (Q), and
T (R) are collinear.

2. T preserves betweenness of points; that is, if P , Q, and R are three collinear points such that P ∗Q∗R,
then T (P ) ∗ T (Q) ∗ T (R).

3. T preserves segments and their lengths; that is, if A and B are points and A′ and B′ are their images
under T , then T (AB) = A′B′ and A′B′ ∼= AB.

4. T preserves lines; that is, if ` is a line, then T (`) is a line.

5. T preserves betweenness of rays; that is, if
−−→
OP ,

−−→
OQ, and

−→
OR are three rays such that

−−→
OP is between

−−→
OQ and

−→
OR, then

−−−→
O′P ′ is between

−−−→
O′Q′ and

−−−→
O′R′.

6. T preserves angles and their measures; that is, if ∠BAC is an angle, then T (∠BAC) is an angle and
T (∠BAC) ∼= ∠BAC.

7. T preserves triangles and their measures; that is, if 4BAC is a triangle, then T (4BAC) is a triangle
and T (4BAC) ∼=4BAC.

8. T preserves circles and their radii; that is, if γ is a circle with center O and radius r, then T (γ) is a
circle with center T (O) and radius r.

9. T preserves polygonal regions and their areas; that is, if R is a polygonal region, then T (R) is a
polygonal region and α(T (R)) = α(R).

10 (added in class). T preserves half-planes; that is, if ` is a line and P and Q are points not on `,
then T (P ) and T (Q) are on the same side of T (`) if and only if P and Q are on the same side of `.

Theorem 12.2.8 (Fundamental Theorem of Isometries). If 4ABC and 4DEF are two triangles with
4ABC ∼=4DEF , then there exists a unique isometry T such that T (A) = D, T (B) = E, and T (C) = F .

Corollary 12.2.9 (An Isometry is Determined by Its Action on Three Noncollinear Points). If f and
g are two isometries and A, B, and C are three noncollinear points such that f(A) = g(A), f(B) = g(B), and
f(C) = g(C), then f(P ) = g(P ) for every point P .

Corollary 12.2.11. Every isometry of the plane can be expressed as a composition of reflections. The number of
reflections required is at most three.

Theorem 12.3.4 (First Rotation Theorem). An isometry is a rotation if and only if it is a composition of
reflections through two nonparallel lines.

Theorem 12.3.5 (First Translation Theorem). An isometry is a translation if and only if it is a composition
of reflections through two lines that are either identical or parallel.

Theorem 12.4.7 (Classification of Euclidean Motions). Every Euclidean motion is either the identity, a
reflection, a rotation, a translation, or a glide reflection.

Axioms of Hyperbolic Geometry

The Seven Postulates of Neutral Geometry.

The Hyperbolic Parallel Postulate. For every line ` and for every point P that does not lie on `, there are at
least two lines m and n such that P lies on both m and n and both m and n are parallel to `.

Theorems of Hyperbolic Geometry

(All the theorems of neutral geometry are valid in hyperbolic geometry.)

Theorem 8.2.1 (Triangle Angle-Sums in Hyperbolic Geometry). For every triangle 4ABC, σ(4ABC) <
180◦.



Theorem 8.2.1 (Quadrilateral Angle-Sums in Hyperbolic Geometry). For every quadrilateral �ABCD,
σ(�ABCD) < 360◦.

Theorem 8.2.3. There does not exist a rectangle.

Corollary 8.2.4 (Positivity of Defect). For every triangle 4ABC, 0◦ < δ(4ABC) < 180◦.

Theorem 8.2.7. In a Lambert quadrilateral, the length of a side between two right angles is strictly less than the
length of the opposite side.

Corollary 8.2.9. In a Saccheri quadrilateral, the length of the altitude is less than the length of a side.

Corollary 8.2.10 In a Saccheri quadrilateral, the length of the summit is greater than the length of the base.

Theorem 8.2.11 (AAA Congruence Theorem). If 4ABC is similar to 4DEF , then 4ABC is congruent to
4DEF .

Theorem 8.3.1. If ` is a line, P is an external point, and m is a line such that P lies on m, then there exists at
most one point Q such that Q 6= P , Q lies on m, and d(Q, `) = d(P, `).

Theorem 8.3.3. If ` and m are parallel lines and there exist two points on m that are equidistant from `, then `
and m admit a common perpendicular.

Theorem 8.3.4. If lines ` and m admit a common perpendicular, then that common perpendicular is unique.


