
Math 444/445 Geometry for Teachers Summer 2008

Supplement C: Similar Triangles

This supplement is meant to be read after Venema’s Section 9.2. Throughout this section, we assume all

nine axioms of Euclidean geometry.

Similar Triangles

The idea of scaling geometric objects is ubiquitous in our experience. When you draw a map to scale, or
enlarge a photo, or tell your computer to use a larger font size, you are creating a new geometric object that
has the “same shape” as the old one, but has all of its parts reduced or enlarged in size – or “scaled” – by
the same ratio. In geometry, two figures that have the same shape but not necessarily the same size are said
to be similar to each other. (We will give a more precise mathematical definition below.)

To analyze this concept in the context of axiomatic Euclidean geometry, let us start with triangles, the
simplest geometric figures. There are two separate things that we might expect to be the case when two
triangles are similar (Fig. 1): First, all three pairs of corresponding angles should be congruent (which means
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Figure 1: Similar Triangles.

the triangles have the “same shape”), and second, the lengths of pairs of corresponding sides should all have
the same ratio (which means they have “proportional sizes”). In some high-school geometry texts, including
that of Jacobs, the definition of similar triangles includes both of these properties. However, it is a fact
(which we will prove below) that each of these conditions implies the other. For us, it will be easier to choose
one of them as our official definition of similar triangles.

Thus we make the following definition: Two triangles are said to be similar if there is a correspondence
between their vertices such that corresponding angles are congruent. The notation4ABC ∼ 4DEF means
that4ABC is similar to4DEF under the correspondence A↔ D, B ↔ E, and C ↔ F , or more specifically
that

∠A ∼= ∠D, ∠B ∼= ∠E, ∠C ∼= ∠F.

The first thing to notice is that in Euclidean geometry, it is only necessary to check that two of the
corresponding angles are congruent.

Theorem C.1 (AA Similarity Theorem). If 4ABC and 4DEF are triangles such that ∠A ∼= ∠D and

∠B ∼= ∠E, then 4ABC ∼ 4DEF .

Proof. Under these hypotheses, it follows immediately from the Angle-Sum Theorem that ∠C ∼= ∠F .

The next theorem shows that similar triangles can be readily constructed in Euclidean geometry, once a
new size is chosen for one of the sides. It is an analogue for similar triangles of Venema’s Theorem 6.2.4.

Theorem C.2 (Similar Triangle Construction Theorem). If 4ABC is a triangle, DE is a segment,

and H is a half-plane bounded by
←→
DE, then there is a unique point F ∈ H such that 4ABC ∼ 4DEF .

1



A B

C

D E

F

P
Q

H

Figure 2: Construction of a triangle similar to a given one.

Proof. The Angle Construction Theorem ensures that there exists a unique ray
−−→
DP lying in H such that

∠EDP ∼= ∠A (Fig. 2). Similarly, there exists a unique ray
−−→
EQ in H such that ∠DEQ ∼= ∠B. Because the

measures of ∠A and ∠B sum to less than 180◦ by Corollary B.9, it follows that the measures of ∠EDP and
∠DEQ also sum to less than 180◦. By Euclid’s Postulate V, therefore, there is a point F on that same side

of
←→
DE where the lines

←→
DP and

←→
EQ intersect. By the AA Similarity Theorem, 4ABC ∼ 4DEF .

To prove uniqueness, just note that if F ′ is any other point satisfying the conclusion of the theorem,

then the fact that ∠EDF ′ ∼= ∠BAC implies that F ′ must lie on
−−→
DP by the uniqueness part of the Angle

Construction Theorem, and similarly F ′ must lie on
−−→
EQ. Since these two rays intersect only at F , it follows

that F = F ′.

It is important to observe that although it is always possible in neutral geometry to construct a triangle
congruent to a given one, as Theorem 6.2.4 showed, this construction of similar triangles only works in
Euclidean geometry because it requires Euclid’s Postulate V. In fact, we will see later that in hyperbolic
geometry, it is impossible to construct non-congruent similar triangles!

Our main order of business in this section is to show that similar triangles have proportional sides. Our
proof of this fact is modeled on that of Euclid (which he carries out in Book VI), using the theory of area.
Thus before we get to our theorem about similar triangles, let us establish two simple facts about areas of
triangles. The first of these is Euclid’s Proposition I.37, while the second is his first proposition in Book VI.
For us, they are both simple consequences of the area formula for triangles.

Lemma C.3. Suppose 4ABC and 4A′BC are two distinct triangles that have a common side BC, such

that
←−→
AA′ ‖

←→
BC (Fig. 3). Then α(4ABC) = α(4A′BC).

A A′

B CD D′

h h

Figure 3: Lemma C.3.

Proof. Let D and D′ be the feet of the perpendiculars from A and A′, respectively, to
←→
BC. Because

←→
AD and

←−→
A′D′ are both perpendicular to

←→
BC , they are parallel to each other by Corollary 6.5.8. It then follows that

�AA′D′D is a parallelogram (actually a rectangle, but all we need to know is that it is a parallelogram), and
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so AD ∼= A′D′ by Theorem B.19. Set h = AD = A′D′, so that h is the height of both triangles 4ABC and
4A′BC. It then follows from the area formula for triangles that α(4ABC) = 1

2
(BC)h = α(4A′BC).

Lemma C.4. Suppose 4ABC is a triangle, and D is a point such that B ∗D ∗ C (Fig. 4). Then

α(4ABD)

α(4ABC)
=

BD

BC
.
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Figure 4: Lemma C.4.

Proof. Note that both 4ABD and 4ABC have the same height h, which is just the distance from A to
←→
BC. Therefore, the formula for the area of a triangle shows that

α(4ABD)

α(4ABC)
=

1

2
BD · h

1

2
BC · h

=
BD

BC
,

as claimed.

Our main tool for analyzing proportionality in similar triangles will be the following theorem, which
shows that a line parallel to one side of a triangle cuts off proportional segments from the other two sides.

Theorem C.5 (The Side-Splitter Theorem). Suppose 4ABC is a triangle, and ` is a line parallel to
←→
BC that intersects AB at an interior point D (Fig. 5). Then ` also intersects AC at an interior point E,

and
AD

AB
=

AE

AC
.

A
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`

Figure 5: The Side-Splitter Theorem.
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Figure 6: Proof of the Side-Splitter Theorem.

Proof. Because ` is parallel to
←→
BC, it does not contain B or C; and because it intersects AB at an interior

point, it does not contain A either. Therefore, Pasch’s Theorem guarantees that ` also intersects the interior
of one other side of 4ABC. Since it cannot intersect BC, it must intersect the interior of AC. Let E denote
the intersection point.

Draw BE, and consider 4AEB (Fig. 6). From Lemma C.4, we conclude that

α(4ADE)

α(4ABE)
=

AD

AB
. (C.1)

Similarly, drawing DC and considering 4ADC, we obtain

α(4ADE)

α(4ADC)
=

AE

AC
. (C.2)

It follows from Theorem 9.1.7 and additivity of area that

α(4ABE) = α(4ADE) + α(4DEB),

α(4ADC) = α(4ADE) + α(4DEC).

But it follows from Lemma C.3 that α(4DEB) = α(4DEC), and therefore that

α(4ABE) = α(4ADC). (C.3)

Combining (C.1), (C.2), and (C.3), we obtain

AD

AB
=

α(4ADE)

α(4ABE)
=

α(4ADE)

α(4ADC)
=

AE

AC

as desired.

Now we come to the main theorem of this section, which says that similar triangles have proportional
corresponding sides. It is often called simply the Similar Triangles Theorem.

Theorem C.6 (Fundamental Theorem on Similar Triangles). If 4ABC ∼ 4DEF , then

AB

DE
=

AC

DF
=

BC

EF
. (C.4)

Proof. Suppose 4ABC ∼ 4DEF . If AB = DE, then 4ABC is congruent to 4DEF by SAS, and the
theorem is true because all the ratios in (C.4) are equal to 1. So let us suppose that AB 6= DE. One of
them is larger, say DE > AB. We will prove the first equality in (C.4); the proof of the other equality is
exactly the same.

Choose a point P in the interior of DE such that DP ∼= AB, and let ` be the line through P and parallel

to
←→
EF (Fig. 7). It follows from the Side-Splitter Theorem that ` intersects DF at an interior point Q, and
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Figure 7: Proof of the Similar Triangles Theorem.

that
DP

DE
=

DQ

DF
. (C.5)

By the converse to the Corresponding Angles Theorem, ∠DPQ ∼= ∠E, which by hypothesis is congruent
in turn to ∠B. It also follows from the hypothesis that ∠D ∼= ∠A. Since DP ∼= AB by construction, we have
4DPQ ∼= 4ABC by SAS. Substituting DP = AB and DQ = AC into (C.5), we obtain the first equation
in (C.4).

This is one of the most important theorems in Euclidean geometry. Nearly every geometry book has
some version of it, but you will find it treated differently in different books. For example, in a textbook
that includes proportionality of the sides as part of the definition of similar triangles, this theorem would
be rephrased to say that if two triangles have congruent corresponding angles, then they are similar. Some
textbooks, for some reason, do not prove this theorem at all, but instead take it as an additional postulate
(often called the AAA Similarity Postulate or some such thing).

We have followed the lead of Euclid (as does Jacobs) in using the theory of area to prove this theorem.
In fact, it is possible to give a proof that does not use areas at all (and therefore does not require either the
Neutral Area Axiom or the Euclidean Area Axiom). Venema gives such a proof in Sections 7.3–7.4, which
you might wish to read if you’re curious. That proof is considerably more involved than the one we have
given here; because of that, and because the area-based proof is perfectly rigorous and is much more likely
to be found in high-school texts, we have chosen to stick with Euclid’s approach. There is little to be gained
by avoiding the use of area in the treatment of similar triangles.

There are many useful consequences of the Similar Triangles Theorem. The first one is really just a
simple rephrasing of the theorem.

Corollary C.7. If 4ABC ∼ 4DEF , then there is a positive number r such that

AB = r ·DE, AC = r ·DF, BC = r · EF.

Proof. Just define r to be the ratio AB/DE, and use (C.4).

Theorem C.8 (SAS Similarity Theorem). If 4ABC and 4DEF are triangles such that ∠A ∼= ∠D
and AB/DE = AC/DF , then 4ABC ∼ 4DEF .

Proof. Exercise C.1.

Theorem C.9 (SSS Similarity Theorem). If 4ABC and 4DEF are triangles such that AB/DE =
AC/DF = BC/EF , then 4ABC ∼ 4DEF .

Proof. Exercise C.2.

Note that the preceding theorem is actually the converse to the Similar Triangles Theorem. Taken
together, these two theorems say that two triangles have equal corresponding angles if and only if they have
proportional corresponding sides.
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Theorem C.10 (Area Scaling Theorem). If two triangles are similar, then the ratio of their areas is

the square of the ratio of any two corresponding sides; that is, if 4ABC ∼ 4DEF and AB = r ·DE, then

α(4ABC) = r2 · α(4DEF ).

Proof. Exercise C.3.

Finally, using the theory of similar triangles, we can give yet another proof of the Pythagorean Theorem.
(Since it is one of the most significant theorems in all of mathematics, it never hurts to see another proof!)
As usual, we will label the vertices of our right triangle A, B, and C, with the right angle at C; and we will
denote the length of the leg opposite A by a, the length of the leg opposite B by b, and the length of the
hypotenuse by c (Fig. 8).

A B

C

a
b

c

Figure 8: The Pythagorean Theorem: a2 + b2 = c2.

Theorem C.11 (The Pythagorean Theorem). Suppose 4ABC is a right triangle with right angle ∠C,

and let a = BC, b = CA, and c = AB. Then a2 + b2 = c2.

Proof. Let D be the foot of the perpendicular from C to
←→
AB (Fig. 9). Notice that D cannot coincide with

A B

C

Dx y

h
a

b

c

Figure 9: Proof of the Pythagorean Theorem.

A
B

C

D

Figure 10: D cannot lie outside AB.

A or B, for then 4ABC would have a second right angle at A or B, contradicting Corollary B.9. Also,
because ∠A and ∠B are acute, D cannot be outside of AB – for example, if A ∗B ∗D, then ∠CBA would
be an exterior angle for 4CBD that is smaller than the remote interior angle at D (Fig. 10), contradicting
the Exterior Angle Theorem. Thus D is an interior point of AB. Set x = AD, y = BD, and h = CD.

By the Angle-Sum Theorem applied to the right triangles 4CBD and 4ABC, µ∠BCD + µ∠B = 90◦

and µ∠A + µ∠B = 90◦. It follows by algebra that ∠BCD ∼= ∠A, so by the AA Similarity Theorem, we
conclude that 4CBD ∼ 4ABC. The Similar Triangles Theorem then gives, among other things,

a

c
=

y

a
.
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The same argument also shows that 4ACD ∼ 4ABC, so

b

c
=

x

b
.

Simplifying both equations and adding them together, we obtain

a2 = cy,

b2 = cx,

a2 + b2 = c(x + y).

Since x + y = c, this proves the theorem.

Our last theorem in this section is the last theorem in Euclid’s Book I.

Theorem C.12 (Converse to the Pythagorean Theorem). Suppose 4ABC is a triangle, with side

lengths a = BC, b = CA, and c = AB. If a2 + b2 = c2, then ∠C is a right angle.

Proof. Exercise C.4.

Exercises

C.1. Prove Theorem C.8 (the SAS Similarity Theorem). [Hint: If AB < DE, choose a point P in the

interior of DE such that DP = AB, and let ` be the line through P parallel to
←→
EF . Prove that `

intersects the interior of DF at a point Q, and use the hypothesis, the Side-Splitter Theorem, and
some algebra to show that 4ABC ∼= 4DPQ.]

C.2. Prove Theorem C.9 (the SSS Similarity Theorem). [Hint: The proof is very similar to that of the SAS
Similarity Theorem.]

C.3. Prove Theorem C.10 (the Area Scaling Theorem). [Hint: Drop a perpendicular from a vertex to the
opposite side in each triangle, and use the AA Similarity Theorem to show that this forms two pairs
of similar triangles.]

C.4. Prove Theorem C.12 (the converse to the Pythagorean Theorem). [Hint: Construct a right triangle
whose legs have lengths a and b, and show that it is congruent to 4ABC.]
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