
Math 444/445 Geometry for Teachers Summer 2008

Supplement B: Consequences of the Euclidean Parallel Postulate

This supplement is meant to be read in place of Sections 6.6–6.10 in Venema. (We will come back and
read those sections later.) You should read these pages after reading Venema’s Section 6.5.

Consequences of the Euclidean Parallel Postulate

From this point on in our study of Euclidean geometry, we officially add the Euclidean Parallel Postulate to
our list of axioms. Thus, in addition to the six axioms of neutral geometry, we assume the following:

Axiom B.1 (Euclidean Parallel Postulate). For every line ` and for every point P that does not lie on
`, there is exactly one line m such that P lies on m and m ‖ `.

As you learned in Venema’s Corollary 6.5.6, the axioms of neutral geometry are already sufficient to
prove that given a line ` and a point P /∈ `, there exists at least one line through P and parallel to `. Thus
the real content of the Euclidean Parallel Postulate is the statement that there is only one such line. We
will see that many familiar properties of Euclidean geometry follow from this postulate.

The first of these properties is a converse to the Alternate Interior Angles Theorem. It is Euclid’s
Proposition 29, the first of Euclid’s propositions in which he makes use of his fifth postulate.

Theorem B.2 (Converse to the Alternate Interior Angles Theorem). If two parallel lines are cut
by a transversal, then both pairs of alternate interior angles are congruent.

Proof. Suppose ` and m are parallel lines cut by a transversal t, and let A and B denote the points where t
intersects ` and m, respectively. Choose either pair of alternate interior angles and label them ∠CAB and
∠ABD. (Fig. 1).
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Figure 1: Proof of the converse to the Alternate Interior Angles Theorem.

By the Angle Construction Theorem, there is a ray
−−→
BE on the same side of t as

−−→
BD that makes an angle

with
−−→
BA that is congruent to ∠CAB. It follows from the Alternate Interior Angles Theorem that

←→
BE is

parallel to `. By the Euclidean Parallel Postulate, therefore,
←→
BE is in fact equal to m. Since D and E are on

the same side of t, this means that the rays
−−→
BE and

−−→
BD are equal, and therefore ∠ABD = ∠ABE. Since

∠ABE is congruent to ∠CAB by construction, we conclude that ∠ABD ∼= ∠CAB.

Corollary B.3 (Converse to the Corresponding Angles Theorem). If two parallel lines are cut by a
transversal, then all four pairs of corresponding angles are congruent.

Proof. Exercise B.1.

Corollary B.4 (Converse to the Supplementary Angles Theorem). If two parallel lines are cut by
a transversal, then each pair of interior angles lying on the same side of the transversal is supplementary.

Proof. Exercise B.2.
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These theorems lead to a number of additional properties of parallel lines, most of which will probably
all seem familiar from your everyday experience. The proofs will be left as exercises.

The first result is a simple corollary of the Euclidean Parallel Postulate. Venema calls this Proclus’s

Axiom, because a late Greek mathematician named Proclus used it as one step in a “proof” of Euclid’s
fifth postulate (which turned out, like so many others, to be incorrect).

Theorem B.5 (Proclus’s Lemma). If ` and `′ are parallel lines and t 6= ` is a line such that t intersects
`, then t also intersects `′.

Proof. Exercise B.3.

Theorem B.6 (Parallels and Perpendiculars). Suppose ` and `′ are parallel lines.

(a) If t is a transversal such that t ⊥ `, then t ⊥ `′.

(b) If m and n are distinct lines such that m ⊥ ` and n ⊥ `′, then m ‖ n.

Proof. Exercise B.4.

Finally, we have the following result, which seems so “obvious” that you might be tempted to think that it
should follow immediately from the definition of parallel lines together with the axioms of neutral geometry.
But, as we will see later in the course, it cannot be proved without the Euclidean Parallel Postulate (or
something equivalent to it).

Theorem B.7 (Transitivity of Parallelism). If `, m, and n are distinct lines such that ` ‖ m and m ‖ n,
then ` ‖ n.

Proof. Exercise B.5.

The Angle-Sum Theorem

The next theorem is one of the most important facts in Euclidean geometry. To state it concisely, we
introduce the following terminology. If A, B, and C are noncollinear points, the angle sum for 4ABC is
the sum of the measures of its interior angles. It is denoted by σ(4ABC). More specifically, the angle sum
is defined by the equation

σ(4ABC) = µ∠CAB + µ∠ABC + µ∠BCA.

Theorem B.8 (Angle-Sum Theorem). If 4ABC is a triangle, then σ(4ABC) = 180◦.

Proof. By Corollary 6.5.6, there is a line m through A and parallel to
←→
BC (Fig. 2).

A

B C

D E m

Figure 2: Proof of the Angle Sum Theorem.

We can choose points D, E on m such that D is on the opposite side of
←→
AB from C, and E is on the opposite

side of
←→
AC from B. Then ∠ABC and ∠DAB form a pair of alternate interior angles for the transversal

←→
AB,

and ∠BCA and ∠CAE form a pair of alternate interior angles for the transversal
←→
AC. It follows from the

converse to the Alternate Interior Angles Theorem that ∠ABC ∼= ∠DAB and ∠BCA ∼= ∠CAE.

It follows from the way we chose D and E that
−−→
AB is between

−−→
AD and

−→
AC (can you see why?). Therefore,

by the Betweenness Theorem for Rays, we have µ∠DAC = µ∠CAB +µ∠DAB. On the other hand, because
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∠DAC and ∠CAE form a linear pair, the Linear Pair Theorem implies that they are supplementary. Thus,
combining all these results, we obtain

µ∠CAB + µ∠ABC + µ∠BCA = µ∠CAB + µ∠DAB + µ∠CAE

= µ∠DAC + µ∠CAE

= 180◦.

This completes the proof.

Corollary B.9. In any triangle, the sum of the measures of any two interior angles is less than 180◦.

Proof. Since the measures of all three angles sum to 180◦, and the measure of each angle is positive, the sum
of any two of them must be strictly less than 180◦.

Corollary B.10. In any triangle, at least two of the angles are acute.

Proof. Suppose at most one angle in a triangle is acute. Then the measures of two of the angles are at least
90◦, so the sum of their measures is at least 180◦, which contradicts the previous corollary.

Corollary B.11. In any triangle, the measure of each exterior angle is equal to the sum of the measures of
the two remote interior angles.

Proof. This follows immediately from the Angle-Sum Theorem and the Linear Pair Theorem.

One important application of the angle-sum theorem is to elucidate the relationship between Euclid’s fifth
postulate and the Euclidean Parallel Postulate. Note that the fifth postulate actually stated by Euclid did
not refer explicitly to parallel lines; for that reason the postulate we call the Euclidean Parallel Postulate is
sometimes referred to as Playfair’s Postulate, after an eighteenth-century Scottish mathematician named
John Playfair, who proposed it as a more intuitive replacement for Euclid’s fifth.

The next theorem shows that Euclid’s fifth postulate follows from the Euclidean Parallel Postulate.

Theorem B.12 (The Euclidean Parallel Postulate Implies Euclid’s Postulate V). If ` and `′ are
two lines cut by a transversal t in such a way that the sum of the measures of the two interior angles on one
side of t is less than 180◦, then ` and `′ intersect on that side of t.

Proof. First note that ` and `′ are not parallel, because if they were, Corollary B.4 would imply that two
interior angles on the same side of t would have measures adding up to exactly 180◦. Thus there is a point
C where ` and `′ intersect. It remains only to show that C is on the same side of t as the two angles whose
measures add up to less than 180◦.

For definiteness, let us label the point where ` and t intersect as A, and the point where `′ and t intersect
as B. Denote the two interior angles at A as ∠1 and ∠2, and those at B as ∠3 and ∠4, with the labels
chosen so that ∠2 and ∠4 are on the same side of t as C, and ∠1 and ∠3 are on the other side (Fig. 3).
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Figure 3: Euclid’s fifth postulate.
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Then Corollary B.9 applied to 4ABC implies that µ∠2 + µ∠4 < 180◦. On the other hand, because ∠1 and
∠2 form a linear pair, as do ∠3 and ∠4, a little algebra shows that

µ∠1 + µ∠3 = (180◦ − µ∠2) + (180◦ − µ∠4)

= 360◦ − (µ∠2 + µ∠4)

> 180◦.

Thus the two interior angles whose measures add up to less than 180◦ can only be ∠2 and ∠4, and C is on
the same side of t as these angles.

In fact, the converse is also true.

Theorem B.13 (Euclid’s Postulate V Implies the Euclidean Parallel Postulate). The six axioms
of Neutral Geometry together with Euclid’s Postulate V imply the Euclidean Parallel Postulate.

Proof. Exercise B.6.

Thus, in the presence of the axioms of neutral geometry, the Euclidean Parallel Postulate and Euclid’s
Postulate V are equivalent, meaning that each one implies the other. When we go back to Venema’s Section
6.8, we will see that there are many more results that are also equivalent to the Euclidean Parallel Postulate.

Quadrilaterals

So far in our study of geometry, we have concentrated most of our attention on triangles. Almost as important
as triangles are four-sided figures (quadrilaterals). In this section we describe some of the most important
properties of such figures in the Euclidean setting.

Suppose A, B, C, and D are four distinct points with the following properties:

(a) No three of the points are collinear;

(b) If two of the segments AB, BC , CD, and DA intersect, they do so only at a common endpoint.

Then the union of the four segments AB, BC , CD, and DA is called a quadrilateral, and is denoted by
�ABCD. Note that the order in which the points are listed is significant: If �ABCD is a quadrilateral,
then some reorderings of the vertices, such as �BCDA and �DCBA, represent the same quadrilateral (i.e.,
the union of the same four line segments), but other orderings, such as �ACBD, do not. In fact, �ACBD
might not represent a quadrilateral at all, because two of the segments might intersect at an interior point
(Fig. 5).

A

B

C
D

Figure 4: A quadrilateral.

A
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C
D

Figure 5: Not a quadrilateral.

Here is some standard terminology regarding quadrilaterals. Suppose �ABCD is a quadrilateral.

• The four points A, B, C, and D are called the vertices of �ABCD.

• The four segments AB, BC, CD, and DA are called the sides of �ABCD.

• The two segments AC and BD are called the diagonals of �ABCD.
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• Any pair of sides of �ABCD that do not intersect are called opposite sides.

• Any pair of sides of �ABCD that intersect at a common endpoint are called adjacent sides.

• The four angles formed by pairs of adjacent sides are called the angles of the quadrilateral.

• �ABCD is a trapezoid if at least one pair of opposite sides are parallel.

• �ABCD is a parallelogram if both pairs of opposite sides are parallel.

• �ABCD is a rectangle if all four of its angles are right angles.

• �ABCD is a rhombus if all four of its sides are congruent.

• �ABCD is a square if it is both a rhombus and a rectangle.

The definition of congruence of quadrilaterals is a straightforward generalization of the definition for
triangles. Two quadrilaterals are said to be congruent if there is a correspondence between their vertices
such that all four pairs of corresponding sides and all four pairs of corresponding angles are congruent. The
notation �ABCD ∼= �A′B′C ′D′ means that �ABCD is congruent to �A′B′C ′D′ under the correspondence
A↔ A′, B ↔ B′, C ↔ C ′, and D ↔ D′.

We wish to prove an analogue of the angle-sum theorem for quadrilaterals. It will say that the sum of the
“interior angles” of a quadrilateral is equal to 360◦. But there is a complication in defining interior angles
for quadrilaterals that did not arise in the case of triangles. To see why, consider the quadrilateral pictured
in Fig. 6. The two edges that meet at B form an angle, which is by definition one of the angles of �ABCD.

A

B

C
D

Figure 6: A nonconvex quadrilateral.

However, this angle is not what we would want to consider as an “interior angle” of the quadrilateral. In fact,
any reasonable interpretation of the term “interior angle” at B would require us to consider angle measures
greater than 180◦.

It is possible to extend our notion of angle measures and to define what we mean by “interior angles”
of a quadrilateral, in such a way that in a quadrilateral like that in Fig. 6, the “interior angle” at B has
a measure greater than 180◦; with these conventions, the angle-sum theorem we are about to state would
apply to such quadrilaterals as well. However, the definitions involve some intricate subtleties, and for the
purposes we have in mind it is simpler just to rule out quadrilaterals of this type.

For that reason, we make the following definition. A convex quadrilateral is one with the property
that every vertex is contained in the interior of the angle formed by the two segments that do not contain
that vertex. For example, the quadrilateral in Fig. 4 is convex; however, the one in Fig. 6 is not, because
the vertex D is not in the interior of ∠ABC.

Note that a convex quadrilateral is not the same thing as a convex set, as defined in Definition 5.5.1.
(The definitions are related, though – if we had taken the trouble to define the “interior” of a quadrilateral,
then we could show that �ABCD is a convex quadrilateral if and only if its interior is a convex set; but we
will not do so.)

Checking that �ABCD is a convex quadrilateral entails checking that each of its four vertices is contained
in the interior of its opposite angle; and each such containment reduces in turn to two statements – for
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example, to say that D is in the interior of ∠ABC means that A and D are on the same side of
←→
BC and C

and D are on the same side of
←→
BA. There are eight such statements in all. However, when you expand out

all the definitions, you will see that four of them are redundant, so in fact �ABCD is a convex quadrilateral
if and only if it satisfies the following four conditions:

• A and B are on the same side of
←→
CD,

• B and C are on the same side of
←→
AD,

• C and D are on the same side of
←→
AB, and

• D and A are on the same side of
←→
BC.

In other words, each pair of adjacent vertices lies on the same side of the line formed by the remaining two
vertices.

Here is the main result in this section. If �ABCD is a convex quadrilateral, we define its angle sum,
denoted by σ(�ABCD), to be the sum of the measures of its four angles:

σ(�ABCD) = µ∠ABC + µ∠BCD + µ∠CDA + µ∠DAB.

Theorem B.14 (Angle-Sum Theorem for Convex Quadrilaterals). If �ABCD is a convex quadri-
lateral, then σ(�ABCD) = 360◦.

Proof. Exercise B.7.

Because of the importance of the preceding theorem, it is useful to have some simple criteria for recog-
nizing when a quadrilateral is convex. The next few theorems give several such criteria.

Theorem B.15 (Truncated Triangle Theorem). Suppose 4ABC is a triangle, and D and E are points
such that A ∗D ∗B and A ∗ E ∗ C. Then �BCED is a convex quadrilateral (Fig. 7).

A

B C

D
E

Figure 7: A truncated triangle is a convex quadrilateral.

Proof. Because E is between A and C, it follows from the Betweenness vs. Betweenness Theorem that
−−→
BE

is between
−−→
BA and

−−→
BC, or in other words that E is in the interior of ∠DBC. The same argument shows

that D is in the interior of ∠ECB.
To show that C is in the interior of ∠BDE, we note that the Y-Theorem applied to the ray

−→
AC shows

that C is on the same side of
←→
DB as E. On the other hand, since A and B are on opposite sides of

←→
DE,

as are A and C, it follows that C is on the same side of
←→
DE as B. By definition, this means that C is in

the interior of ∠BDE. Exactly the same argument shows that B is in the interior of ∠CED, and therefore
�BCED is a convex quadrilateral.

Theorem B.16. Every trapezoid is a convex quadrilateral.
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Figure 8: A nonconvex quadrilateral cannot be a trapezoid.

Proof. We will prove the contrapositive: Assuming that �ABCD is a nonconvex quadrilateral, we will prove
that it does not have a pair of parallel opposite sides. The assumption that �ABCD is nonconvex implies
that two adjacent vertices lie on opposite sides of the line formed by the other two vertices; without loss of

generality, say that A and D are on opposite sides of
←→
BC (Fig. 8). (Note that the definition of a quadrilateral

prohibits A or D from lying on
←→
BC, because no three vertices are collinear.) Let E be the interior point of

AD that lies on
←→
BC (Fig. 8). This shows that

←→
AD and

←→
BC are not parallel.

Note that C, D and E are noncollinear (because if they were all on one line, then A would also lie on

that line, contradicting the definition of a quadrilateral). Thus 4CDE is a triangle, and
←→
AB intersects side

CE of this triangle at B. Now
←→
AB cannot contain C or D (for then three vertices of �ABCD would be

collinear), and it cannot contain E (for then A, B, and D would be collinear). Thus Pasch’s Theorem shows

that
←→
AB must intersect another side of 4CDE, either CD or DE. We already know that

←→
AB intersects

←→
DE

at A, which is not in 4CDE, so the only remaining possibility is that
←→
AB intersects CD. Therefore

←→
AB

and
←→
CD are not parallel either, so �ABCD is not a trapezoid.

Corollary B.17. Every parallelogram is a convex quadrilateral.

Proof. Every parallelogram is a trapezoid by definition.

The next criterion is actually a necessary and sufficient condition for convexity.

Theorem B.18. A quadrilateral is convex if and only if its diagonals intersect (Fig. 9). If they do intersect,
then the intersection point is an interior point of both diagonals.

A

B

C
D

E

Figure 9: The diagonals of a convex quadrilateral intersect.

Proof. Assume that �ABCD is a quadrilateral. First we will prove the last statement of the theorem: If the
diagonals intersect, then their intersection point is interior to both diagonals. Suppose AC and BD intersect
at a point E. If E were equal to A, then B, A, and D would be collinear, which contradicts the definition of
a quadrilateral. The same argument shows that E cannot be equal to B, C, or D, so E is an interior point
of both diagonals.
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Now we will show that �ABCD is convex if and only if its diagonals intersect. Assume first that AC and
BD intersect, and call the intersection point E. By the argument in the preceding paragraph, E is between

A and C, so it follows from the Betweenness vs. Betweenness Theorem that
−−→
BE is between

−−→
BA and

−−→
BC.

Since D is a point on
−−→
BE, it is also in the interior of ∠ABC by the Y-Theorem. The same argument shows

that each of the other three vertices is in the interior of its opposite angle, and thus �ABCD is a convex
quadrilateral.

Conversely, assume that �ABCD is a convex quadrilateral. Because D is in the interior of ∠ABC, it

follows from the Crossbar Theorem (applied to 4ABC) that
−−→
BD intersects AC. Call the intersection point

E. Similarly, because C is in the interior of ∠BAD,
−→
AC intersects BD in a point E′. Because the lines

←→
AC

and
←→
BD can have at most one point of intersection, it follows that E = E′, and therefore E is the required

intersection point of the diagonals AC and BD.

The last few theorems in this section express some properties of special quadrilaterals, many of which
should already be familiar from your experience.

Theorem B.19. Every parallelogram has the following properties.

(a) Both pairs of opposite sides are congruent.

(b) Both pairs of opposite angles are congruent.

(c) Its diagonals bisect each other.

Proof. Exercise B.8.

Theorem B.20. Every rectangle has the following properties.

(a) It is a parallelogram.

(b) Its diagonals are congruent.

Proof. Exercise B.9.

Theorem B.21. Every rhombus has the following properties.

(a) It is a parallelogram.

(b) Its diagonals intersect perpendicularly.

Proof. Exercise B.10.
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Exercises

B.1. Prove Corollary B.3 (the converse to the Corresponding Angles Theorem).

B.2. Prove Corollary B.4 (the converse to the Supplementary Angles Theorem).

B.3. Prove Theorem B.5 (Proclus’s Lemma).

B.4. Prove Theorem B.6 (Parallels and Perpendiculars).

B.5. Prove Theorem B.7 (Transitivity of Parallelism).

B.6. Prove Theorem B.13 (Euclid’s Postulate V implies the Euclidean Parallel Postulate).

B.7. Prove Theorem B.14 (the Angle-Sum Theorem for Convex Quadrilaterals). Where do you use the
hypothesis that the quadrilateral is convex?

B.8. Prove Theorem B.19 (properties of parallelograms). [Hint: For parts (a) and (b), draw a diagonal and
prove that the two resulting triangles are congruent. For (c), use Theorem B.18 to show that the two
diagonals intersect, and then prove that they form two pairs of congruent triangles.]

B.9. Prove Theorem B.20 (properties of rectangles).

B.10. Prove Theorem B.21 (properties of rhombi). [Hint: Use the pointwise characterization of angle bisec-
tors, Theorem 6.4.6. You might need to prove first that a rhombus is a convex quadrilateral.]

B.11. Suppose �ABCD is a quadrilateral.

(a) If its diagonals bisect each other, prove that �ABCD is a parallelogram.

(b) If its diagonals are congruent and bisect each other, prove that �ABCD is a rectangle.

(c) If its diagonals are perpendicular and bisect each other, prove that �ABCD is a rhombus.
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