
Math 444/445 Geometry for Teachers Summer 2008

Supplement A: Rays, Angles, and Betweenness

This handout is meant to be read in place of Sections 5.6–5.7 in Venema’s text [V]. You should read
these pages after reading Venema’s Section 5.5.

Betweenness of Points

By definition, a point B is between two other points A and C if all three points are collinear and AB +BC =
AC. Although this definition is unambiguous and easy to state, it is not always easy to work with in proofs,
because we may not always know what the distances AB, BC, and AC are.

There are other ways of thinking about betweenness of points using coordinate functions, which are often
much more useful. Before stating them, let us establish some terminology.

We say that two or more mathematical statements are equivalent if any one of them implies all the
others. For example, if P and Q are mathematical statements, then to say they are equivalent is to say that
P implies Q and Q implies P , or to put it another way, “P if and only if Q.” Given four statements P , Q,
R, and S, if we wish to prove them all equivalent, we don’t have to prove that every statement implies all
of the others; for example, it would suffice to prove that P ⇒ Q ⇒ R ⇒ S ⇒ P (that is, P ⇒ Q, Q ⇒ R,
R ⇒ S, and S ⇒ P ), for then if any one of the four statements is true, we can combine these implications
to arrive at any other.

If x, y, z are three real numbers, we say that y is between x and z if either x < y < z or x > y > z.

Theorem A.1 (Betweenness Theorem for Points). Suppose A, B, and C are distinct points all lying
on a single line `. Then the following statements are equivalent:

(a) AB + BC = AC (i.e., A ∗B ∗ C).

(b) B lies in the interior of the line segment AC.

(c) B lies on the ray
−→
AC and AB < AC.

(d) For any coordinate function f : `→ R, the coordinate f(B) is between f(A) and f(C).

Proof. We will prove (a) ⇔ (b), (a) ⇔ (c), and (a) ⇔ (d).
The equivalence of (a) and (b) is just another way of restating the definition of interior points of a

segment:

B is an interior point of AC ⇔ B ∈ AC and B 6= A and B 6= C

⇔ A ∗B ∗ C

⇔ AB + BC = AC.

Next, we will prove (a) ⇒ (c). Assuming A ∗B ∗C, we conclude that B ∈ AC by definition of segments,

and therefore B ∈
−→
AC by definition of rays. The fact that AB + BC = AC implies by algebra that

AB = AC − BC, which is strictly less than AC because BC > 0.

Now we will prove (c) ⇒ (a). Assuming (c), the fact that B ∈
−→
AC means by definition that either

B ∈ AC or A ∗ C ∗B. If the latter is true, then AC + CB = AB. But then our assumption that AB < AC
implies AC + CB < AC, and subtracting AC from both sides we conclude that CB < 0, a contradiction.
So the only remaining possibility is that B ∈ AC. Since B is not equal to A or C, we must have A ∗B ∗ C.

The next step is to prove that (a) ⇒ (d). Suppose AB + BC = AC, and let f : `→ R be any coordinate
function for `. For convenience, write a = f(A), b = f(B), and c = f(C), so that AB = |b−a|, AC = |c−a|,
and BC = |c− b| by the Ruler Postulate. Our assumption then becomes the following equation:

|b− a|+ |c− b| = |c− a|. (A.1)
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Because A and C are distinct points, it follows that a and c are distinct real numbers. Thus there are
two possibilities: Either a < c or a > c. In the first case, |c− a| = (c− a), and then from algebra and (A.1)
we deduce

(b− a) + (c − b) = (c − a) = |c− a| = |b− a|+ |c− b|. (A.2)

Now the right-hand side of (A.2) is strictly positive, so at least one of the terms on the left-hand side must
be positive, say (b − a) > 0. Then (b − a) = |b − a| by the definition of absolute value. Subtracting this
equation from (A.2), we conclude that (c− b) = |c− b|, which implies that (c − b) > 0 as well. Thus b > a
and c > b, which proves that b is between a and c. In the second case, |c − a| = (a − c), and from algebra
and (A.1) we deduce

(a− b) + (b − c) = (a − c) = |c− a| = |b− a|+ |c− b|. (A.3)

Arguing just as before, we conclude that a > b and b > c, which again implies that b is between a and c.
Finally, we have to prove (d) ⇒ (a). Assuming (d), let f : ` → R be a coordinate function and write

a = f(A), b = f(B), and c = f(C) as before; our assumption means that either a < b < c or a > b > c. In
the first case, algebra implies

AB + BC = |b− a|+ |c− b| = (b− a) + (c− b) = (c− a) = |c− a| = AC,

and in the second case,

AB + BC = |b− a|+ |c− b| = (a− b) + (b− c) = (a− c) = |c− a| = AC.

In each case, we conclude that (a) holds.

Corollary A.2. If A, B, and C are three distinct collinear points, then exactly one of them lies between the
other two.

Proof. Let ` be the line that contains A, B, and C, and let f : `→ R be a coordinate function. If f(A) = a,
f(B) = b, and f(C) = c, then the fact that A, B, C are distinct points implies that a, b, c are distinct real
numbers. It then follows from the properties of real numbers that one of these numbers is largest and one is
smallest, and therefore the remaining number lies between the largest and smallest. Then the Betweenness
Theorem for Points implies that the point corresponding to this number lies between the other two points.

Often, when defining a mathematical term, there might be a choice of several equivalent definitions. For
example, we might have defined “B is between A and C” to mean “all three points lie on a line `, and for
any coordinate function for `, the coordinate of B is between those of A and C.” In fact, this is exactly the
definition of betweenness that Jacobs uses, as do many other high-school geometry texts. The Betweenness
Theorem for Points tells us that both definitions are equivalent, in the sense that for any three points A, B, C,
the truth or falsity of A ∗B ∗ C is the same no matter which definition we choose. The main disadvantage
of the definition in terms of coordinates is that to make use of it, it is necessary to prove that betweenness
does not depend on which coordinate function is used (i.e., that it is not possible to find one coordinate
function that puts the coordinate of B between those of A and C, and another that puts the coordinate of
A between the other two). This is a technical issue that most high-school texts don’t worry about; but since
we are aiming for rigor, the definition AB + BC = AC is preferable because there is no ambiguity. It then
follows from the Betweenness Theorem that the coordinate criterion works for any coordinate function.

Now suppose AB is a line segment. A point M is called a midpoint of AB if M is between A and B
and AM = MB. The requirement that M is between A and B implies that AM +MB = AB, and therefore
simple algebra shows that AM = (1/2)AB = MB.

In his Proposition I.10, Euclid proved that every segment has a midpoint by showing that it can be
constructed using compass and straightedge. For us, the existence and uniqueness of midpoints can be
proved much more simply; the proof is an exercise in the use of coordinate functions.

Theorem A.3 (Existence and Uniqueness of Midpoints). Every line segment has a unique midpoint.

Proof. Exercise A.1.
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It is important to understand why we need to prove the existence of midpoints, when we did not bother
to prove the existence of other geometric objects such as segments or rays. The reason is that just defining
an object does not, in itself, ensure that such an object exists. For example, we might have defined “the first
point in the interior of AB” to be the point F in the interior of AB such that for every other point C 6= F
in the interior of AB, we have A ∗ F ∗ C. This is a perfectly unambiguous definition, but unfortunately
there is no such point, just as there is no “smallest number between 0 and 1.” If we wish to talk about “the
midpoint” of a segment, we have to prove that it exists.

On the other hand, if we define a set, as long as the definition stipulates unambiguously what it means
for a point to be in that set, the set exists, even though it might be empty. Thus the definitions of segments
and rays given in [V] need no further elaboration, because they yield perfectly well-defined sets. (Of course,
in order for the definitions to describe anything interesting, we might wish to verify that they are nonempty.
You should be able to use the Ruler Postulate to show that every line segment contains infinitely many
points, as does every ray. But this is not necessary for the definition to be meaningful.)

Rays

If A and B are two distinct points, Venema has defined the ray
−−→
AB to be the set of points P such that

either P ∈ AB or A ∗B ∗ P . If we expand out the definition of AB, we see that this is equivalent to

P ∈
−−→
AB ⇔ P = A or P = B or A ∗ P ∗B or A ∗B ∗ P . (A.4)

We define an interior point of
−→

AB to be any point P ∈
−−→
AB that is not equal to A. The next theorem

gives a useful alternative characterization of interior points of rays. To say that two real numbers have the

same sign is to say that either both are positive or both are negative.

Theorem A.4 (Ray Theorem). Suppose A and B are distinct points, and f is a coordinate function

for the line
←→
AB satisfying f(A) = 0. Then a point P ∈

←→
AB is an interior point of

−−→
AB if and only if its

coordinate has the same sign as that of B.

Proof. Let A, B, and f be as in the hypothesis of the theorem. First assume that P is an interior point of
−−→
AB. Because P 6= A, (A.4) shows that there are three possibilities for P :

• If P = B, then obviously f(P ) and f(B) have the same sign, because they are equal.

• If A ∗ P ∗ B, then the Betweenness Theorem for Rays implies that either f(A) < f(P ) < f(B) or
f(A) > f(P ) > f(B). In either case, since f(A) = 0, we conclude that f(P ) and f(B) have the same
sign.

• If A ∗B ∗ P , the same reasoning shows that f(A) < f(B) < f(P ) or f(A) > f(B) > f(P ), and again
in both cases f(B) and f(P ) have the same sign.

Conversely, suppose f(P ) and f(B) have the same sign. Let’s assume for starters that both coordinates
are positive. By the Trichotomy Law for real numbers, there are three cases: Either f(P ) < f(B), f(P ) =
f(B), or f(P ) > f(B). Because f(A) = 0, in the first case, we conclude that f(A) < f(P ) < f(B), so
A ∗ P ∗B by the Betweenness Theorem. In the second case, P = B, and in the third, f(P ) > f(B) > f(A),

so P ∗B ∗A. In all three cases, P is in the interior of
−−→
AB. The other possibility, that both f(P ) and f(B)

are negative, is handled similarly.

Corollary A.5. If A and B are distinct points, and f is a coordinate function for the line
←→
AB satisfying

f(A) = 0 and f(B) > 0, then
−−→
AB = {P ∈

←→
AB : f(P ) ≥ 0}.

Proof. Exercise A.2.

Corollary A.6. If A, B, and C are distinct collinear points, then
−−→
AB and

−→
AC are opposite rays if and only

if B ∗A ∗ C, and otherwise they are equal.
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Proof. Exercise A.3.

Corollary A.7 (Segment Construction Theorem). If AB is a line segment and
−−→
CD is a ray, there is

a unique interior point E ∈
−−→
CD such that CE ∼= AB.

Proof. Exercise A.4.

The next theorem expresses a property of rays that seems geometrically “obvious”: If a ray starts out on
a line and goes to one side of the line, it cannot cross over to the other side. This will be important in our
study of angles, among many other things. We call it the Y-Theorem because the drawing that goes with it
(Fig. 1) is suggestive of the letter Y.

A

B `

Figure 1: Setup for the Y-Theorem.

Theorem A.8 (The Y-Theorem). Suppose ` is a line, A is a point on `, and B is a point not on `. Then

every interior point of
−−→
AB is on the same side of ` as B.

Proof. Suppose P is an arbitrary interior point on
−−→
AB, and assume for the sake of contradiction that P and

B are not on the same side of `. There are thus two possibilities: Either P lies on `, or P is on the opposite
side of ` from B.

In the first case, we see that P and A are two distinct points on the line `. By the Incidence Postulate,

this implies that
←→
AP = `. But since A, B, and P are collinear by the definition of a ray, and ` is the only

line containing P and A, it follows that B ∈ ` also, which contradicts the hypothesis.
The other possibility is that P and B are on opposite sides of `. This means that there is an interior

point of PB that lies on `. But since PB is contained in
←→
AB, and A is the only point on ` ∩

←→
AB, the point

on ` ∩ PB must be A itself. As A is not equal to P or B, it must be an interior point of PB, which means

that P ∗A ∗B. This contradicts the fact that P lies on
−−→
AB.

Because of the Y-Theorem, we make the following definition. Suppose ` is a line, A is a point on `, and

B is a point not on `. To say that the ray
−→

AB lies on a certain side of ` means that every interior

point of
−−→
AB lies on that side. The Y-Theorem tells us that if one point of a ray lies on a certain side, then

the ray lies on that side. Of course, the point A itself does not lie on either side of `, but when we say a ray
lies on one side, we mean that its interior points do.

Recall from [V, Def. 5.5.7] that a point B is said to be in the interior of ∠∠∠AOC if B and C are on the

same side of
←→
OA and B and A are on the same side of

←→
OC. From the Y-Theorem, we can conclude that if B

is in the interior of ∠AOC, then every interior point on the ray
−−→
OB is also in the interior. In that situation,

we say that the ray
−→

OB lies in the interior of ∠∠∠AOC.
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Angle Measure

Now we are ready to introduce angle measure. Recall that Venema has defined an angle to be the union of
two nonopposite rays that share the same endpoint. Note that he did not rule out the possibility that the
two rays might be the same ray ; because the union of a ray with itself is just a ray, Venema would allow a
single ray to be considered as an angle. There are no circumstances in which it is useful to work with such
a “degenerate angle,” so to avoid having to deal with this special case, we are going to rule it out. Thus we
officially redefine an angle as follows: An angle is the union of two distinct, nonopposite rays that share the
same endpoint.

In our approach to Euclidean geometry, angle measure, like distance, is an undefined term. Its meaning
will be captured in the Protractor Postulate below. In order to state the postulate, we introduce the following
definition. If A, O, and B are three noncollinear points, the half-rotation of rays determined by A, O,

and B, denoted by HR(A, O, B), is the set consisting of the following rays (see Fig. 2):

• The ray
−→
OA,

• The ray opposite to
−→
OA, and

• Every ray on the same side of
←→
OA as B.

A

B

O

C

D

30

60

90

120

150

Figure 2: Rays in a half-rotation.

It is important to be clear that a half-rotation is a set of rays, not a set of points. (If we took the union

of all the rays in a half-rotation, we would get a set of points, namely a half-plane together with the line
←→
OA;

but that is not what a half-rotation refers to.) It is also important to note that the set HR(A, O, B) depends
on the order in which the points A, O, and B are listed; so in particular, HR(A, O, B) and HR(B, O, A) are

different sets of rays. The point B is included in the definition only to stipulate which side of
←→
OA we are

considering; any other point on the same side of that line would determine the same half-rotation.

Axiom A.9 (The Protractor Postulate). For every angle ∠ABC there exists a real number µ∠ABC,
called the measure of ∠∠∠ABC. For every half-rotation HR(A, O, B), there is a one-to-one correspondence

g from HR(A, O, B) to the interval [0, 180]⊂ R, which sends
−→
OA to 0 and sends the ray opposite

−→
OA to 180,

and such that if
−−→
OC and

−−→
OD are any two distinct, nonopposite rays in HR(A, O, B), then

µ∠COD =
∣

∣

∣
g
(−−→
OD

)

− g
(−−→
OC

)

∣

∣

∣
.

If m is the measure of ∠ABC, we write µ∠ABC = m◦ and say that ∠ABC measures m degrees. Of
course, as you are aware from calculus, it is possible to measure angles using other scales such as radians; if
radian measure is desired, one can just change the Protractor Postulate so that the number 180 is replaced
by π. Since degrees are used exclusively in high-school geometry courses, we will stick with them.

Given any angle ∠ABC, there are many different half-rotations containing both of its rays; for simplicity,
if we wish, we can always use the half-rotation HR(A, B, C) defined by the points A, B, and C themselves.
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Part of what is being asserted by the Protractor Postulate is that the angle measure of ∠ABC is a well-
defined number, which is independent of the half-rotation used to calculate it. Intuitively, this reflects the
fact that no matter where we place our 180◦ protractor, as long as its center is on the vertex of the angle and
its scale intersects both sides of the angle, we will obtain the same value for the angle’s measure. Also, since
∠ABC and ∠CBA represent the same angle (i.e., the same union of rays), they have the same measure. In
particular, we do not distinguish between “clockwise” and “counterclockwise” angles. (In fact, it is not even
clear what those words could mean in the context of our axiomatic system.)

Once we have decided on a half-rotation and its corresponding function g, the number g
(−−→
OB

)

associated
with a particular ray is called the coordinate of the ray with respect to the chosen half-rotation. It is
important to observe that although coordinates of rays can range all the way from 0 to 180, inclusive, it is
a consequence of our conventions that angle measures are always strictly between 0◦ and 180◦, as the next
theorem shows.

Theorem A.10. If ∠ABC is any angle, then 0◦ < µ∠ABC < 180◦.

Proof. Let g be the coordinate function associated with HR(A, B, C). Then the Protractor Postulate says
that

µ∠ABC =
∣

∣

∣
g
(−−→
BC

)

− g
(−−→
BA

)

∣

∣

∣
.

The fact that g is one-to-one means that g
(−−→
BC

)

and g
(−−→
BA

)

are different numbers, so it follows that

µ∠ABC > 0◦. Since the coordinates of
−−→
BA and

−−→
BC are both between 0 and 180, the absolute value of

their difference cannot be greater than 180, and the only way it could be equal to 180 is if one of the coor-

dinates is 180 and the other is 0. Since the only ray whose coordinate is 0 is
−−→
BA, and the only one whose

coordinate is 180 is its opposite ray, the only way this could happen is if
−−→
BA and

−−→
BC are opposite rays; but

part of the definition of an angle is that they are not opposite.

We say that an angle ∠ABC is a right angle if µ∠ABC = 90◦, it is an acute angle if µ∠ABC < 90◦,
and it is a an obtuse angle if µ∠ABC > 90◦. Two angles ∠ABC and ∠DEF are said to be congruent,
written ∠ABC ∼= ∠DEF , if µ∠ABC = µ∠DEF .

Some simple consequence of the Protractor Postulate are worth noting.

Theorem A.11 (Angle Construction Theorem). Let A, O, and B be noncollinear points. For every

real number m such that 0 < m < 180, there is a unique ray
−−→
OC with vertex O and lying on the same side

of
←→
OA as B such that µ∠AOC = m◦.

Proof. Suppose m is such a real number, and let g be the coordinate function associated with HR(A, O, B).

First we will prove existence of
−−→
OC. The Protractor Postulate tells us that there is a unique ray

−−→
OC ∈

HR(A, O, B) such that g
(−−→
OC

)

= m. Because m 6= 0, this ray is not equal to
−→
OA, and because m 6= 180, it

is not opposite to
−→
OA; therefore ∠AOC is an angle. The Protractor Postulate then tells us that

µ∠AOC =
∣

∣

∣
g
(−−→
OC

)

− g
(−→
OA

)

∣

∣

∣
= |m− 0| = m,

as desired.
To prove uniqueness, suppose

−−→
OC ′ is any other ray on the same side of

←→
OA such that µ∠AOC ′ = m◦. Then

−−→
OC ′ ∈ HR(A, O, B) by definition. If m′ = g

(−−→
OC ′

)

, then the Protractor Postulate gives m = µ∠AOC ′ =

|m′ − 0| = m′. Since g is one-to-one, this implies that
−−→
OC ′ =

−−→
OC.

Two angles are said to form a linear pair if they share a common side and their other two sides are
opposite rays. Thus in Fig. 3, if we are given that C ∗ O ∗ A, then ∠AOB and ∠BOC form a linear pair

because they share
−−→
OB and the rays

−→
OA and

−−→
OC are opposite. Two angles ∠ABC and ∠DEF are said to

be supplementary if µ∠ABC + µ∠DEF = 180◦.

Theorem A.12 (Linear Pair Theorem). If two angles form a linear pair, they are supplementary.
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A

B

OC

Figure 3: A linear pair.

Proof. Suppose ∠AOB and ∠BOC form a linear pair. Then by definition, they all lie in the half-rotation

HR(A, O, B). Let g be the coordinate function for this half-rotation, and set b = g
(−−→
OB

)

. By the Protractor

Postulate, we have g
(−→
OA

)

= 0, g
(−−→
OC

)

= 180, and so

µ∠AOB = |b− 0| = b,

µ∠BOC = |180− b| = 180− b.

Adding these two equations yields the result.

Notice that the Linear Pair Theorem does not claim that µ∠AOC = 180◦. This would make no sense,

because rays
−→
OA and

−−→
OC do not form an angle.

Two angles ∠AOB and ∠COD are said to form a pair of vertical angles if they have the same vertex

O and either
−→
OA and

−−→
OC are opposite rays and

−−→
OB and

−−→
OD are opposite rays, or

−→
OA and

−−→
OD are opposite

rays and
−−→
OB and

−−→
OC are opposite rays. (See Fig. 4.)

A

B

OC

D

Figure 4: ∠AOB and ∠COD are vertical angles.

Theorem A.13 (Vertical Angles Theorem). Vertical angles are congruent.

Proof. Exercise A.5.

Two lines ` and m are said to be perpendicular if they intersect at a point O, and one of the rays of `
with vertex O forms a 90◦ angle with one of the rays of m with vertex O. In this case, we write ` ⊥ m.

Theorem A.14 (Four Right Angles Theorem). If ` ⊥ m, then ` and m form four right angles.

Proof. Exercise A.6.

If AB is a line segment, a perpendicular bisector of AB is a line ` such that the midpoint of AB lies

on ` and ` ⊥
←→
AB.

Theorem A.15 (Existence and Uniqueness of Perpendicular Bisectors). Every line segment has a
unique perpendicular bisector.
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Proof. Exercise A.7.

In the axiomatic approach to geometry, angle measures are left undefined, and all of their properties are
deduced purely from the Protractor Postulate. In order to describe a model for the axioms, however, we
would have to define angle measure and show that it satisfies the axiom. Angle measures can be defined for
the Cartesian plane using inverse trigonometric functions, as you have seen in calculus. The explicit formulas
and their rigorous justifications are somewhat complicated, so we will not go into them in detail. A couple
of ways to define angle measures in the Cartesian model are sketched on page 330 of [V].

Betweenness of Rays

The idea of betweenness can be extended to rays. Suppose
−→
OA,

−−→
OB, and

−−→
OC are three rays sharing a common

endpoint, such that no two are equal and no two are opposite. We could choose to follow the pattern of

betweenness of points, and declare that
−−→
OB is between

−→
OA and

−−→
OC if µ∠AOB + µ∠BOC = µ∠AOC.

However, things become somewhat simpler if we start with a different definition; we will show below that it
yields the same result.

Instead, in the situation above, we say that
−→

OB is between
−→

OA and
−→

OC if
−−→
OB lies in the interior of

∠AOC; or in other words if B (or any other interior point of
−−→
OB) is on the same side of

←→
OA as C and on

the same side of
←→
OC as A. The idea is illustrated in Fig. 5. We symbolize this by

−→
OA ∗

−−→
OB ∗

−−→
OC.

A

B

O

C

Figure 5: Betweenness of rays.

The next theorem shows that there is a close relationship between betweenness of rays and betweenness
of points.

Theorem A.16 (Betweenness vs. Betweenness). Let A, O, and C be three noncollinear points and let

B be a point on the line
←→
AC. The point B is between points A and C if and only if the ray

−−→
OB is between

rays
−→
OA and

−−→
OC. (See Fig. 6.)

A

B

O

C

Figure 6: Betweenness vs. betweenness.

8



Proof. Assume first that B is between A and C. This means that B ∈
−→
AC, so B and C are on the same

side of
←→
OA by the Y-theorem. The same argument shows that A and B are on the same side of

←→
OC. This

implies that
−−→
OB lies in the interior of ∠AOC, so

−→
OA ∗

−−→
OB ∗

−−→
OC.

Conversely, assume that
−−→
OB is between

−→
OA and

−−→
OC. This means that B cannot be equal to A or C, so

A, B, and C are three distinct collinear points. Exactly one of them is between the other two by Corollary

A.2. Our assumption means that B and A are on the same side of
←→
OC and B and C are on the same side of

←→
OA. In particular, BC does not intersect

←→
OA, so A cannot be between B and C; and BA does not intersect

←→
OC, so C cannot be between B and A. The only remaining possibility is that B is between A and C.

The next lemma is a technical one that will be used in the proof of the Betweenness Theorem for Rays
below.

Lemma A.17. Suppose O, A, B, and C are four distinct points such that the rays
−−→
OB and

−−→
OC are distinct

and lie on the same side of
←→
OA. Then either

−→
OA ∗

−−→
OB ∗

−−→
OC or

−→
OA ∗

−−→
OC ∗

−−→
OB.

Proof. Either
−−→
OB is between

−→
OA and

−−→
OC or not. If it is, we are done, so suppose it is not. Since we know

that C and B lie on the same side of
←→
OA, the fact that

−→
OA ∗

−−→
OB ∗

−−→
OC is false means that A and B must

lie on opposite sides of
←→
OC. This implies that AB contains an interior point E on the line

←→
OC (Fig. 7). By

A

B

O

C

E

Figure 7: Proof of Lemma A.17.

the Betweenness vs. Betweenness Theorem, it follows that
−−→
OE is between

−→
OA and

−−→
OB. If we can show that

−−→
OE =

−−→
OC, then it follows that

−→
OA ∗

−−→
OC ∗

−−→
OB and the theorem is true in this case as well.

Note that B and C lie on the same side of
←→
OA by hypothesis, and B and E also lie on the same side by

the Y-theorem. Thus C and E lie on the same side of
←→
OA. This means that O cannot be between C and

E (for if it were, C and E would lie on opposite sides of
←→
OA), so Corollary A.6 shows that

−−→
OC =

−−→
OE as

claimed.

Like betweenness of points, there are other equivalent characterizations of betweenness of rays. The next
theorem is a central result about betweenness of rays. Its proof is a bit longer than its counterpart for points,
but it will pay off by being extremely useful in all of our work in geometry. Notice the parallel between this
theorem and the betweenness theorem for points.

Theorem A.18 (Betweenness Theorem for Rays). Suppose O, A, B, and C are four distinct points

such that no two of the rays
−→
OA,

−−→
OB, and

−−→
OC are equal and no two are opposite. Then the following

statements are equivalent:

(a) µ∠AOB + µ∠BOC = µ∠AOC.

(b)
−−→
OB lies in the interior of ∠AOC (i.e.,

−→
OA ∗

−−→
OB ∗

−−→
OC).

(c)
−−→
OB lies in the half-rotation HR(A, O, C) and µ∠AOB < µ∠AOC.

(d)
−→
OA,

−−→
OB, and

−−→
OC all lie in some half-rotation, and if g is the coordinate function cooresponding to

any such half-rotation, the coordinate g
(−−→
OB

)

is between g
(−→
OA

)

and g
(−−→
OC

)

.
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Proof. We will prove (b) ⇒ (c) ⇒ (d) ⇒ (a) ⇒ (b).

Begin by assuming (b). This implies, in particular, that B is on the same side of
←→
OA as C, so

−−→
OB ∈

HR(A, O, C) by definition, and the first part of (c) is proved. Let g be the coordinate function for the

half-rotation HR(A, O, C), and let b = g
(−−→
OB

)

and c = g
(−−→
OC

)

. (Note that g
(−→
OA

)

= 0 by the Protactor

Postulate.) Because
−−→
OB and

−−→
OC are distinct and neither is equal to

−→
OA or its opposite, it follows from the

Protractor Postulate that b and c are distinct positive numbers less that 180, and

µ∠AOB = b, µ∠AOC = c, µ∠BOC = |b− c|.

If b > c, then µ∠BOC = b − c < b, while if b < c, then µ∠BOC = c − b < c. In either case, among the
angles ∠AOB, ∠BOC, and ∠AOC, this shows that ∠BOC is not the largest of the three.

Our assumption (b) also imples that B is on the same side of
←→
OC as A. Therefore, reasoning exactly as in

the preceding paragraph but with A and C reversed, we conclude that ∠AOB is not the largest angle either.
The only remaining possibility is that ∠AOC is the largest, which implies in particular that µ∠AOB ≤
µ∠AOC. If the two angles were equal, this would contradict the uniqueness part of the Angle Construction

Theorem, because
−−→
OB and

−−→
OC lie on the same side of

←→
OA. So finally we conclude µ∠AOB < µ∠AOC as

desired, so (c) has been proved.

Next assume (c). Clearly all three rays
−→
OA,

−−→
OB, and

−−→
OC lie in a single half-rotation, namely HR(A, O, B).

If we let g0 be the coordinate function for this half-rotation, and set b0 = g0

(−−→
OB

)

and c0 = g0

(−−→
OC

)

as before,
then the hypothesis guarantees that b0 < c0, so

µ∠AOB + µ∠BOC = b0 + |c0 − b0| = b0 + (c0 − b0) = c0 = µ∠AOC. (A.5)

In particular, we have shown that (a) holds. (That is not what we are aiming for right now, but it is a fact
we need to use in this part of the proof.)

Now suppose HR(E, O, F ) is any other half-rotation containing all three rays, and let g be the corre-

sponding coordinate function. If we put a = g
(−→
OA

)

, b = g
(−−→
OB

)

, and c = g
(−−→
OC

)

, then the Protractor
Postulate together with (A.5) ensures that

|b− a|+ |c− b| = |c− a|.

Reasoning exactly as in the proof of the Betweenness Theorem for Points, this implies that b is between a
and c. Thus we have proved (d).

Now assume that (d) holds. Let HR(E, O, F ) be some half-rotation containing the three rays, let g be
the corresponding coordinate function, and define a, b, and c as in the preceding paragraph. The assumption
(d) means that either a < b < c or a > b > c. In the first case, algebra and the Protractor Postulate yield

µ∠AOB + µ∠BOC = |b− a|+ |c− a| = (b− a) + (c− a) = (c− a) = |c− a| = µ∠AOC.

The other case is handled similarly, just as in the Proof of the Betweenness Theorem for Points. This proves
(a).

Finally, assume (a). First we will show that A and C are on opposite sides of
←→
OB. If they are not, then

Lemma A.17 implies that either
−−→
OB ∗

−→
OA ∗

−−→
OC or

−−→
OB ∗

−−→
OC ∗

−→
OA. In the first case, the previously proved

implication (b) ⇒(c) shows that µ∠AOC < µ∠BOC. In the second case, the same argument shows that
µ∠AOC < µ∠AOB. On the other hand, (a) implies that µ∠AOC is larger than either µ∠AOB or µ∠BOC,
which is a contradiction.

Thus we know that A and C are on opposite sides of
←→
OB. This means that AC has an interior point E

that lies on
←→
OB. The point E cannot be equal to O, because A, O, and C are not collinear. The Betweenness

vs. Betweenness Theorem tells us that
−→
OA ∗

−−→
OE ∗

−−→
OC.

To complete the proof, we need to show that
−−→
OE =

−−→
OB. To prove this, let us assume for the sake of

contradiction that these two rays are not equal; the only other possibility is that they are opposite rays (Fig.
8). Let α = µ∠AOB, β = µ∠BOC, and γ = µ∠AOC, so our assumption (a) becomes

α + β = γ. (A.6)
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A

B

OC

E α

β

γ1

γ1

Figure 8: Proof of Lemma A.17.

Let us also put γ1 = µ∠AOE and γ2 = µ∠EOC. Because
−→
OA∗

−−→
OE ∗

−−→
OC, it follows from the already proved

implications (b) ⇒ (c) ⇒ (d) ⇒ (a) that
γ1 + γ2 = γ. (A.7)

The Linear Pair Theorem tells us, on the other hand, that

α + γ1 = 180◦,

β + γ2 = 180◦.

Adding these last two equations together and substituting (A.7), we get α + β + γ = 360◦, and then
substituting (A.6) yields γ + γ = 360◦. This implies that γ = 180◦, which is a contradiction because angle

measures are less than 180◦. Thus
−−→
OE and

−−→
OB cannot be opposite rays, so we have completed the proof of

(b).

The next corollary is an analogue of Corollary A.2.

Corollary A.19. If
−→
OA,

−−→
OB, and

−−→
OC are three rays that all lie on one half-rotation and such that no two

are equal and no two are opposite, then exactly one is between the other two.

Proof. Exercise A.8.

Note that the hypothesis that the three rays all lie in one half-rotation is essential; without it, the
preceding corollary is not true. A counterexample is suggested by Fig. 9.

Figure 9: None of these rays is between the other two.

Suppose ∠AOB is an angle. A ray
−−→
OC is called an angle bisector of ∠∠∠AOB if

−→
OA ∗

−−→
OC ∗

−−→
OB and

µ∠AOC = µ∠COB.
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Theorem A.20 (Existence and Uniqueness of Angle Bisectors). Every angle has a unique angle
bisector.

Proof. Exercise A.9.

We conclude this supplement with the Crossbar Theorem, another “obvious” fact that is easy to take for
granted, but that is very difficult to prove without the machinery we have developed so far. It is related to
Pasch’s Axiom (Theorem 5.5.10 in [V]), but slightly different – whereas Pasch’s Axiom says that a line that
goes through one side of a triangle must go through one of the other sides, the Crossbar Theorem says that
a ray that starts at a vertex and contains at least one point in the interior of that angle must go through the
opposite side. Notice also the contrast between the Betweenness vs. Betweenness Theorem and the Crossbar
Theorem: In the former, we assume that a ray through a vertex intersects the opposite side of the triangle
and conclude that it is between the two corresponding sides, while in the Crossbar Theorem, we assume that
the ray is between two sides of the triangle and conclude that it must intersect the opposite side.

Theorem A.21 (The Crossbar Theorem). If 4ABC is a triangle and
−−→
AD is a ray between

−−→
AB and

−→
AC, then

−−→
AD intersects BC (Fig. 10).

A B

C
D

G?

Figure 10: The Crossbar Theorem.

Proof. The fact that
−−→
AB ∗

−−→
AD ∗

−→
AC means that the following two relationships hold:

C and D are on the same side of
←→
AB; (A.8)

B and D are on the same side of
←→
AC. (A.9)

First we wish to show that B and C lie on opposite sides of
←→
AD. Suppose not: Then

B and C are on the same side of
←→
AD. (A.10)

Combining (A.10) with (A.8) shows that
−−→
AB∗

−→
AC∗

−−→
AD, while (A.10) together with (A.9) shows

−→
AC∗

−−→
AB∗

−−→
AD.

This is a contradiction to Corollary A.19, so our assumption is false and we conclude that B and C lie on

opposite sides of
←→
AD.

Let G be the point where BC meets
←→
AD. Because A, B, C are noncollinear, G 6= A. Thus G lies either

in the interior of
−−→
AD or in the interior of its opposite ray. Observe that C and G are on the same side of

←→
AB

by the Y-Theorem, and C and D are on the same side of
←→
AB by (A.8); thus G and D are also on the same

side of
←→
AB. It follows that A cannot be between G and D, so

−→
AG =

−−→
AD and the theorem is proved.
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Exercises

A.1. Prove Theorem A.3 (Existence and Uniqueness of Midpoints).

A.2. Prove Corollary A.5.

A.3. Prove Corollary A.6.

A.4. Prove Corollary A.7 (the Segment Construction Theorem).

A.5. Prove Theorem A.13 (the Vertical Angles Theorem).

A.6. Prove Theorem A.14 (the Four Right Angles Theorem).

A.7. Prove Theorem A.15 (Existence and Uniqueness of Perpendicular Bisectors).

A.8. Prove Corollary A.19.

A.9. Prove Theorem A.20 (Existence and Uniqueness of Angle Bisectors).
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