Math 444

Geometry for Teachers

Homework Assignment: Due Wednesday, 2/11/08

Part I:

Each of the statements below is an implication. For each statement, do all of the following:

- Identify the hypothesis and the conclusion.
- Write the converse.
- Write the inverse.
- Write the contrapositive.
- 1. If P, Q, and R lie on ℓ , then they are collinear.
- 2. If ℓ is a line, then it contains at least two distinct points.
- 3. A quadrilateral is a parallelogram if it is a rectangle.
- 4. For a triangle to be isosceles, it is necessary that it have two equal angles.
- 5. x is divisible by 4 only if it is even.
- 6. If 2x + 1 = 5, then x = 2 or x = 3.
- 7. If the 10^{100} th decimal digit of π is 3, then $\sqrt{5} = 2$.

Part II:

- 8. Venema, page 42, Exercises 3.1, 3.2.
- 9. Write the negations of each of the three incidence axioms.
- 10. Write the negation of each of the following statements.
 - (a) If P, Q, and R all lie on ℓ , then they are collinear.
 - (b) P lies on ℓ or it lies on m.
 - (c) For any three points P, Q, and R, if they are collinear, then there is another point S that is not equal to P, Q, or R.
 - (d) For every line ℓ , if ℓ contains three distinct points, then it has points in common with three distinct lines.
 - (e) There exists a line ℓ such that for every point P, P lies on ℓ .
 - (f) There exists a point P that does not lie on any line.
- 11. Below is the outline of a proof of Theorem 3.6.2. Fill in the blanks with appropriate reasons. **Theorem 3.6.2.** If ℓ is any line, then there exists at least one point P such that P does not lie on ℓ .

```
Proof:
```

	Statement	Reason
1.	Let ℓ be a line.	
2.	Let P, Q , and R be three noncollinear points.	
3.	P, Q, and R do not all lie on any one line.	
4.	At least one of the points P, Q , or R does not lie on ℓ .	
5.	There is a point that does not lie on ℓ .	

Part III:

12. Write proofs in two-column format for Venema's Theorems 3.6.3 and 3.6.4 on page 41.