Assignment \#8

Due 6/7/13 (for practice only; not to be handed in)

Reading:

- [AT] Sections 6.2 and 6.3
- [AT] Guided Problems 6.1, 6.2, 6.3

Written Problems:

(1) $[\mathrm{AT}]$ Exercise 6.5 .
(2) Verify the Gauss-Bonnet theorem for the torus of revolution generated by the circle whose equation is $(y-2)^{2}+z^{2}=1$, by computing the value of each term separately. (See also Exercise 4.41.)
(3) Suppose $R \subseteq \mathbb{R}^{3}$ is a regular domain that is diffeomorphic to a closed disk. Suppose further that its boundary curve is the image of a closed geodesic. Prove that the Gaussian curvature of R must be positive somewhere.
(4) Suppose $R \subseteq \mathbb{R}^{3}$ is a regular domain that is diffeomorphic to the cylinder $S^{1} \times[0,1] \subseteq \mathbb{R}^{3}$. Suppose further that both boundary curves are images of closed geodesics. If the Gaussian curvature of R is not identically zero, prove that it attains both positive and negative values.
(5) Let S be the paraboloid defined by $z=x^{2}+y^{2}$, and for each $r>0$, let S_{r} be the portion of S where $z \leq r$. Verify the Gauss-Bonnet formula for S_{r} by computing each term separately.

