Reading:

- [AT] Section 5.1 (pages 259-260).
- [AT] Section 5.2.

Written Problems:

(1) [AT] Exercise 5.17
(2) $[\mathrm{AT}]$ Exercise 5.18
(3) $[\mathrm{AT}]$ Exercise 5.19
(4) Determine all smooth curves on the unit sphere that have constant geodesic curvature.
(5) Suppose S_{1} and S_{2} are connected regular surfaces, and $F, G: S_{1} \rightarrow S_{2}$ are two local isometries such that $F(p)=G(p)$ and $d F_{p}=d G_{p}$ for some $p \in S_{1}$. Prove that $F \equiv G$. [Hint: Let T be the set of points $q \in S_{1}$ such that $F(q)=G(q)$ and $d F_{q}=d G_{q}$, and show that T is both open and closed in S_{1}.]

