Assignment \#4

Due 5/3/13 (for practice only; not to be handed in)

Reading:

- [AT] Section 4.6.
- [AT] Guided Problems 4.3, 4.4, 4.9, 4.16.

Written Problems:

(1) Let $S \subseteq \mathbb{R}^{3}$ be a regular surface and $p_{0} \in \mathbb{R}^{3}$. Suppose $p \in S$ is a point where the distance $\left\|p_{0}-p\right\|$ achieves a maximum among all points of S. Prove that the curvatures of S at p satisfy $K(p) \geq 1 /\left\|p_{0}-p\right\|^{2}$ and $|H(p)| \geq 1 /\left\|p_{0}-p\right\|$.
(2) If $S \subseteq \mathbb{R}^{3}$ is a compact regular surface contained in a closed ball of radius r, prove that there is a point $p \in S$ such that $K(p) \geq 1 / r^{2}$ and $|H(p)| \geq 1 / r$.
(3) Prove that there does not exist a compact regular surface $S \subseteq \mathbb{R}^{3}$ that has nonpositive Gaussian curvature everywhere.
(4) Let $\sigma:(-\pi / 2, \pi / 2) \rightarrow \mathbb{R}^{2}$ be given by $\sigma(t)=(\alpha(t), \beta(t))$, where

$$
\begin{aligned}
& \alpha(t)=\frac{1}{2} \cos t \\
& \beta(t)=\int_{0}^{t} \sqrt{1-\frac{1}{4} \sin ^{2} u} d u
\end{aligned}
$$

(a) Prove that σ is a regular curve and a homeomorphism onto its image.
(b) Prove that the surface of revolution generated by σ has Gaussian curvature identically equal to 1 , but that its principal curvatures are not constant.
(5) Let $S, S^{\prime} \subseteq \mathbb{R}^{3}$ be the following surfaces:

$$
\begin{aligned}
S & =\left\{(x, y, z): x^{2}+y^{2}>0, z=0\right\}, \\
S^{\prime} & =\left\{(x, y, z): x^{2}+y^{2}=\frac{1}{3} z^{2}, z>0\right\},
\end{aligned}
$$

(so that S is the $x y$-plane with the origin removed, and S^{\prime} is the upper half of a cone). Define a map $F: S \rightarrow \mathbb{R}^{3}$ by

$$
F(x, y, 0)=\frac{1}{2 \sqrt{x^{2}+y^{2}}}\left(x^{2}-y^{2}, 2 x y, \sqrt{3}\left(x^{2}+y^{2}\right)\right) .
$$

Show that F is a local isometry from S to S^{\prime}. Is it a global isometry?
(6) $[\mathrm{AT}]$ Exercise 4.57.

