Reading:

AT Sections 4.1, 4.2, 4.3.

Written Problems:

- (1) [AT] Exercise 4.1.
- (2) [AT] Exercise 4.6.
- (3) [AT] Exercise 4.10.
- (4) [AT] Exercise 4.14. (Assume the surface is connected.)
- (5) [AT] Exercise 4.15.
- (6) Suppose $S_1, S_2 \subseteq \mathbb{R}^3$ are regular surfaces and $F \colon \mathbb{R}^3 \to \mathbb{R}^3$ is a rigid motion such that $F(S_1) = S_2$. Prove that $F|_{S_1}$ is an isometry from S_1 to S_2 .
- (7) Let S be the torus of revolution defined in Example 3.1.19, and let $R \subseteq S$ be the subset where $y \ge 0$ and $z \ge z_0$. Prove that R is a regular region and compute its area.