Reading:

AT Sections 4.1, 4.2, 4.3.

Written Problems:

(1) $[\mathrm{AT}]$ Exercise 4.1.
(2) $[\mathrm{AT}]$ Exercise 4.6.
(3) $[\mathrm{AT}]$ Exercise 4.10.
(4) [AT] Exercise 4.14. (Assume the surface is connected.)
(5) $[\mathrm{AT}]$ Exercise 4.15.
(6) Suppose $S_{1}, S_{2} \subseteq \mathbb{R}^{3}$ are regular surfaces and $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a rigid motion such that $F\left(S_{1}\right)=S_{2}$. Prove that $\left.F\right|_{S_{1}}$ is an isometry from S_{1} to S_{2}.
(7) Let S be the torus of revolution defined in Example 3.1.19, and let $R \subseteq S$ be the subset where $y \geq 0$ and $z \geq z_{0}$. Prove that R is a regular region and compute its area.

