Reading:

- Handout 2 (Differentials of Surface Maps)
- Handout 3 (Bilinear and Quadratic Forms)

Written Problems:

- (1) [AT] Exercise 3.19.
- (2) [AT] Exercise 3.31. (For this problem, you have to adopt the textbook's convention that surfaces are connected.)
- (3) [AT] Exercise 3.48.
- (4) Let $F: \mathbb{R}^3 \to \mathbb{R}^3$ be the map

$$F(x, y, z) = \left(\frac{x^2 - y^2}{1 + z^2}, \frac{2xy}{1 + z^2}, \frac{2z}{1 + z^2}\right).$$

- (a) Prove that F restricts to a smooth map $f \colon S^2 \to S^2$, where S^2 is the unit sphere.
- (b) Let $p = (0, 1, 0) \in S^2$. Find bases for $T_p S^2$ and $T_{F(p)} S^2$, and compute the 2×2 matrix of df_p in terms of these bases.
- (5) Let V be a 2-dimensional inner product space, and let B be a symmetric bilinear form on V. Let $\{\mathbf{x}_1, \mathbf{x}_2\}$ be an arbitrary basis for V, and denote the coefficients of the inner product in this basis by

$$E = \langle \mathbf{x}_1, \mathbf{x}_1 \rangle, \qquad F = \langle \mathbf{x}_1, \mathbf{x}_2 \rangle = \langle \mathbf{x}_2, \mathbf{x}_1 \rangle, \qquad G = \langle \mathbf{x}_2, \mathbf{x}_2 \rangle,$$

and the coefficients of B by

$$e = B(\mathbf{x}_1, \mathbf{x}_1), \qquad f = B(\mathbf{x}_1, \mathbf{x}_2) = B(\mathbf{x}_2, \mathbf{x}_1), \qquad g = B(\mathbf{x}_2, \mathbf{x}_2),$$

Prove that

$$\det A = \frac{eg - f^2}{EG - F^2},$$

where A denotes the symmetric endomorphism associated with B.

- (6) Define $Q: \mathbb{R}^2 \to \mathbb{R}$ by $Q(x, y) = x^2 + y^2 + 4xy$.
 - (a) Prove that Q is a quadratic form, and find its associated symmetric bilinear form B and symmetric endomorphism A. (We are considering \mathbb{R}^2 as an inner product space with its standard inner product.)
 - (b) Determine the eigenvalues of A and find an orthonormal basis of eigenvectors.
- (7) Suppose V is a 2-dimensional inner product space, $Q: V \to \mathbb{R}$ is a quadratic form, and λ_1, λ_2 are the eigenvalues of its associated endomorphism, labeled so that $\lambda_1 \leq \lambda_2$. Let $S \subseteq V$ be the set of unit vectors. Prove that λ_1 and λ_2 are the minimum and maximum values of $Q|_S$.