Reading:

- Handout 2 (Differentials of Surface Maps)
- Handout 3 (Bilinear and Quadratic Forms)

Written Problems:

(1) $[\mathrm{AT}]$ Exercise 3.19.
(2) [AT] Exercise 3.31. (For this problem, you have to adopt the textbook's convention that surfaces are connected.)
(3) $[\mathrm{AT}]$ Exercise 3.48.
(4) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the map

$$
F(x, y, z)=\left(\frac{x^{2}-y^{2}}{1+z^{2}}, \frac{2 x y}{1+z^{2}}, \frac{2 z}{1+z^{2}}\right) .
$$

(a) Prove that F restricts to a smooth map $f: S^{2} \rightarrow S^{2}$, where S^{2} is the unit sphere.
(b) Let $p=(0,1,0) \in S^{2}$. Find bases for $T_{p} S^{2}$ and $T_{F(p)} S^{2}$, and compute the 2×2 matrix of $d f_{p}$ in terms of these bases.
(5) Let V be a 2 -dimensional inner product space, and let B be a symmetric bilinear form on V. Let $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ be an arbitrary basis for V, and denote the coefficients of the inner product in this basis by

$$
E=\left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle, \quad F=\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle=\left\langle\mathbf{x}_{2}, \mathbf{x}_{1}\right\rangle, \quad G=\left\langle\mathbf{x}_{2}, \mathbf{x}_{2}\right\rangle,
$$

and the coefficients of B by

$$
e=B\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right), \quad f=B\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=B\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right), \quad g=B\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right),
$$

Prove that

$$
\operatorname{det} A=\frac{e g-f^{2}}{E G-F^{2}}
$$

where A denotes the symmetric endomorphism associated with B.
(6) Define $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $Q(x, y)=x^{2}+y^{2}+4 x y$.
(a) Prove that Q is a quadratic form, and find its associated symmetric bilinear form B and symmetric endomorphism A. (We are considering \mathbb{R}^{2} as an inner product space with its standard inner product.)
(b) Determine the eigenvalues of A and find an orthonormal basis of eigenvectors.
(7) Suppose V is a 2-dimensional inner product space, $Q: V \rightarrow \mathbb{R}$ is a quadratic form, and λ_{1}, λ_{2} are the eigenvalues of its associated endomorphism, labeled so that $\lambda_{1} \leq \lambda_{2}$. Let $S \subseteq V$ be the set of unit vectors. Prove that λ_{1} and λ_{2} are the minimum and maximum values of $\left.Q\right|_{S}$.

