
Math 443 Differential Geometry Spring 2013

Differentials of Surface Maps

This handout should be read in place of Section 3.4 of the textbook.

The Differential of a Map Out of a Surface

In Handout 1 from last quarter, we defined the differential of a smooth map at a point: it’s the
linear map whose matrix is the Jacobian matrix of the function. Theorem 1.4 showed how the
differential can be interpreted as a “best linear approximation” to the map near the given point.

Now we would like to define a differential of a map between surfaces. The problem, however, is
that there is no way to take partial derivatives of such a map, so we can’t use the Jacobian matrix.
We have to come up with a different definition.

We begin with the somewhat simpler case of smooth maps from surfaces into Euclidean spaces.
The key to making sense of the differential of such a map is the chain rule. Suppose Ω ⊆ R

n is an
open subset, F : Ω → R

k is a smooth map, and p ∈ Ω. Given a vector w ∈ R
n, we can always find a

smooth curve σ : (−ε, ε) → Ω that satisfies σ(0) = p and σ′(0) = w. (One obvious example of such
a curve is the straight line parametrized by σ(t) = p+ tw; but there are many other possibilities.)
The composite map F ◦σ : (−ε, ε) → R

k is a curve in R
k, and the chain rule tells us that its velocity

is given by

(F ◦ σ)′(0) = dFp(σ
′(0)) = dFp(w).

If we’re careful, we can make sense of the left-hand side of this formula for a function defined only
on a surface, and thus we can use it as a definition of the right-hand side.

Here is the official definition. Suppose S ⊆ R
3 is a regular surface and F : S → R

k is a smooth
map. For any p ∈ S, we define the differential of F at p to be the map dFp : TpS → R

k given by

(2.1) dFp(w) = (F ◦ σ)′(0),
where σ : (−ε, ε) → S is any smooth curve in S satisfying σ(0) = p and σ′(0) = w. (Such a curve
exists by definition of TpS.) The next theorem shows that dFp is a well-defined linear map.

Theorem 2.1 (Properties of the Differential). Let S ⊆ R
3 be a smooth surface, F : S → R

k

be a smooth map, and p ∈ S.

(a) For each w ∈ TpS, the vector dFp(w) ∈ R
k is well defined, independently of the choice of σ.

(b) The map dFp : TpS → R
k so defined is linear.

(c) If W is an open neighborhood of p in R
3 and F̃ : W → R

k is a smooth map whose restriction
to S ∩W is equal to F |S∩W , then

(2.2) dFp = dF̃p

∣∣∣
TpS

.

Proof. Let w ∈ TpS be arbitrary, and let σ : (−ε, ε) → S be a curve satisfying σ(0) = p and
σ′(0) = w. By Proposition 3.2.12 (applied to the component functions of F ), there exist an open

neighborhood W of p in R
3 and a smooth map F̃ : W → R

k whose restriction to S ∩W is equal to

F . Because F̃ is defined on a Euclidean open set, its differential is defined in the usual way (via the
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Jacobian matrix), and we can apply the chain rule to it. Using the fact that (if ε is small enough)

σ takes its values in S ∩W , where F̃ = F , we compute

(F ◦ σ)′(0) = (F̃ ◦ σ)′(0)
= dF̃p

(
σ′(0)

)
= dF̃p(w).

This shows, first, that dFp(w) = (F ◦ σ)′(0) is well defined, because dF̃p(w) does not depend on
the choice of σ at all. Second, it proves part (c) of the theorem, because this same computation
applies to any smooth extension of F defined on an open neighborhood of p. And finally, it proves

part (b), because dF̃p : R
3 → R

k is linear and the restriction of a linear map to a linear subspace is
also linear. �

Thanks to this theorem, we have two effective ways to compute the differential of a function
whose domain is a regular surface: either by choosing an appropriate smooth curve and using (2.1),
or by choosing a smooth extension and using (2.2). Although either of these methods requires
making a choice, the theorem guarantees that the result will be independent of choices.

Maps Between Surfaces

Next, we will see how to make sense of the differential of a map between surfaces. Given a smooth
map F : S1 → S2 between regular surfaces, we can think of F as a map into R

3, and then the
preceding theorem shows that for each p ∈ S1 we have a well-defined linear map dFp : TpS1 → R

3.
The next proposition shows that it actually takes its values in TF (p)S2.

Proposition 2.2 (Differential of a Map Between Surfaces). Suppose S1 and S2 are smooth
surfaces and F : S1 → S2 is a smooth map. For each p ∈ S1, the differential dFp maps TpS1 into
TF (p)S2.

Proof. Let F : S1 → S2 be a smooth map, and let p be an arbitrary point of S1. Given w ∈ TpS1,
we can find a smooth curve σ : (−ε, ε) → S1 such that σ(0) = p and σ′(0) = w. Since F takes its
values in S2, it follows that F ◦ σ is a smooth curve in S2 satisfying (F ◦ σ)(0) = F (σ(0)) = F (p).
Thus, by the very definition of the tangent plane, its initial velocity (F ◦ σ)′(0) is an element of
TF (p)S2. But the definition of the differential shows that dFp(w) = (F ◦ σ)′(0), so dFp(w) is an
element of TF (p)S2 as claimed. �

As in the case of maps from a surface to R
k, the differential of a map between surfaces can also

be computed in two ways: either by choosing an appropriate smooth curve or by choosing a smooth
extension. Here are some simple examples of differentials between surfaces that can be computed
using smooth extensions.

Example 2.3 (Differentials).

(a) If F : S1 → S2 is a smooth map that is the restriction of a linear map A : R3 → R
3, then for

each p ∈ S1, the differential dFp is equal to the restriction of dAp, which in turn is equal to
A itself. Thus dFp(w) = Aw for every w ∈ TpS1, or equivalently dFp = A|TpS1 .

(b) Suppose S ⊆ R
3 is a regular surface and idS : S → S is the identity map. Because idS is

the restriction of idR3 , which is linear, the preceding argument shows that for each p ∈ S,
the differential d(idS)p is equal to the identity map of TpS.
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You will have opportunities to practice more such computations on the next homework assign-
ment.

The next few theorems show that differentials of maps between surfaces behave similarly to
ordinary differentials.

Theorem 2.4 (Chain Rule for Surface Maps). Suppose S1, S2, S3 ⊆ R
3 are regular surfaces,

and F : S1 → S2 and G : S2 → S3 are smooth maps. For any p ∈ S1,

(2.3) d(G ◦ F )p = dGF (p) ◦ dFp.

The same is true if one or more of the surfaces S1, S2, S3 are replaced by open subsets of Euclidean
spaces.

Proof. First consider the case in which S1, S2, and S3 are all regular surfaces. Given p ∈ S1,

Proposition 3.2.12 shows that we can extend F to a smooth map F̃ : W1 → R
3 defined on a

neighborhood W1 of p in R
3, and we can extend G to a smooth map G̃ : W2 → R

3 defined on

a neighborhood W2 of F (p) in R
3. The composition G̃ ◦ F̃ is defined and smooth on the set

W1 ∩ F̃−1(W2), which is a neighborhood of p. The ordinary chain rule (Theorem 1.2 on Handout
1) shows that

d
(
G̃ ◦ F̃ )

p
= dG̃

˜F (p) ◦ dF̃p.

Then Theorem 2.1(c) (together with the fact that F̃ (p) = F (p)) shows that (2.3) follows from this.

If one or more of the surfaces are replaced by Euclidean open sets, the argument is even simpler,
because we don’t need to find extensions for the maps whose domains are open subsets of Euclidean
spaces. �
Theorem 2.5. If F : S1 → S2 is a diffeomorphism, then for each p ∈ S1, the linear map
dFp : TpS1 → TF (p)S2 is invertible, with inverse given by(

dFp

)−1
= d
(
F−1

)
F (p)

.

Proof. Let p ∈ S1 be arbitrary. Because F−1 ◦F = idS1 and F ◦F−1 = idS2 , the chain rule implies

d
(
F−1

)
F (p)

◦ dFp = d
(
F−1 ◦ F )

p
= d(idS1)p = idTpS1 ,

dFp ◦ d
(
F−1

)
F (p)

= d
(
F ◦ F−1

)
F (p)

= d(idS2)F (p) = idTF (p)S2 .

This shows that d(F−1)F (p) is a two-sided inverse for dFp, and therefore it is its inverse. �

The converse to the preceding theorem is not true in general; a smooth map between surfaces can
have invertible differential everywhere without being injective or surjective. However, the following
theorem is a local converse. (It is Corollary 3.4.28 in the textbook.)

Theorem 2.6 (Inverse Function Theorem for Surfaces). Suppose S1, S2 ⊆ R
3 are regular

surfaces, F : S1 → S2 is a smooth map, and p ∈ S1 is a point such that dFp is invertible. Then
there exist relative neighborhoods V1 of p in S1 and V2 of F (p) in S2 such that F |V1 : V1 → V2 is a
diffeomorphism.

Proof. The fact that F is smooth means that there are local parametrizations ϕ : U1 → S1 and
ψ : U2 → S2 such that p ∈ ϕ(U1), F (ϕ(U1)) ⊆ ψ(U2), and ψ

−1 ◦ F ◦ ϕ is smooth in the ordinary

sense. Let F̂ = ψ−1 ◦ F ◦ ϕ, which is a smooth map from U1 to U2. Let a0 = ϕ−1(p) ∈ U1 and



4

b0 = ψ−1(F (p)) ∈ U2. Note that both ϕ and ψ are diffeomorphisms if we think of U1 and U2 as
surfaces in the xy plane as in Example 3.2.8. Thus by the chain rule for surfaces,

(2.4) dF̂a0 = d
(
ψ−1 ◦ F ◦ ϕ)a0 = d

(
ψ−1)F (p) ◦ dFp ◦ dϕa0 .

All three linear maps on the right-hand side are isomorphisms, and therefore so is the linear map on

the left-hand side. The ordinary inverse function theorem (Theorem 1.7 in Handout 1) applied to F̂

shows that there are neighborhoods A0 of a0 and B0 of b0 such that F̂ restricts to a diffeomorphism
from A0 to B0. Then the restriction of F to ϕ(A0) can be written as the following composition of
diffeomorphisms:

F |ϕ(A0) = ψ ◦ F̂ ◦ ϕ−1|ϕ(A0),

and thus it is a diffeomorphism from ϕ(A0) to F (ϕ(A0)). �

The expression (2.4) also provides a useful method for computing the differential in terms of
parametrizations. As a linear map, dFp is completely determined by what it does to the elements
of any basis of TpS. Since a local parametrization determines a convenient basis, it is useful to see
how to compute the differential in terms of such a basis.

Example 2.7. Suppose F : S1 → S2 is a smooth map between regular surfaces. Let p ∈ S1 be
arbitrary, and let ϕ : U1 → S1 and ψ : U2 → S2 be local parametrizations such that p ∈ ϕ(U1) and

F (ϕ(U1)) ⊆ ψ(U2), and let F̂ = ψ−1 ◦ F ◦ ϕ : U1 → U2 as above. (The map F̂ is sometimes called
the coordinate representation of F .) The vectors {dϕa0(e1), dϕa0(e2)} form a basis for TpS1;
let us abbreviate them as ϕu = dϕa0(e1) and ϕv = dϕa0(e2). Formula (2.4) implies

dFp ◦ dϕa0 = dψb0 ◦ dF̂a0 ,

and therefore we can compute the action of dFp on ϕu as follows:

dFp(ϕu) = dFp ◦ dϕa0(e1) = dψb0 ◦ dF̂a0(e1).

On the other hand, since F̂ is a smooth map between Euclidean open sets, its differential is given
by its Jacobian matrix, so the right-hand side above can be expanded as follows:

dFp(ϕu) = dψb0

(
∂F̂1

∂u
(a0)e1 +

∂F̂2

∂u
(a0)e2

)

=
∂F̂1

∂u
(a0)ψu +

∂F̂2

∂u
(a0)ψv ,

where we use the abbreviations ψu = dψb0(e1) and ψv = dψb0(e2). A similar computation shows

dFp(ϕv) =
∂F̂1

∂v
(a0)ψu +

∂F̂2

∂v
(a0)ψv.

By linearity, this means that the result of applying dFp to an arbitrary vector Aϕu + Bϕv is
Cψu +Dψv, where the coefficients C and D are determined by matrix multiplication as follows:

(
C
D

)
=

⎛⎜⎜⎝
∂F̂1

∂u
(a0)

∂F̂1

∂v
(a0)

∂F̂2

∂u
(a0)

∂F̂2

∂v
(a0)

⎞⎟⎟⎠(AB
)
.

In other words, in terms of the bases {ϕu, ϕv} for TpS1 and {ψu, ψv} for TF (p)S2, the differential

dFp is represented by the Jacobian matrix of the function F̂ .


