A. Using isometries or otherwise, prove the following AAA Congruence Theorem on the hyperbolic plane: If $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are two geodesic triangles in \mathbb{M}_{-1} such that interior angle measures at A, B, and C are equal to the measures at A^{\prime}, B^{\prime}, and C^{\prime}, respectively, then $\triangle A B C$ is congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$.
B. Suppose $S \subset \mathbb{R}^{3}$ is a regular surface with a Riemannian metric g, and suppose $R \subset S$ is a regular region diffeomorphic to the cylinder $S^{1} \times[0,1]$, whose boundary curves are both simple closed geodesics. If the Gauss curvature in R is not identically zero, prove that it attains both positive and negative values.
C. Suppose $S \subset \mathbb{R}^{3}$ is a compact orientable regular surface that is diffeomorphic to a torus, endowed with the first fundamental form. Prove that S contains points p_{1}, p_{2}, p_{3} such that $K\left(p_{1}\right)>0, K\left(p_{2}\right)=0$, and $K\left(p_{2}\right)<0$.
D. Compute the Euler characteristic of each of the following regular surfaces in \mathbb{R}^{3} :
(a) An ellipsoid defined by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

(b) The surface S defined by

$$
x^{2}+y^{10}+z^{6}=1
$$

[Hint: you don't need to construct a triangulation.]
E. A closed geodesic on a surface is a geodesic with a periodic parametrization. For each of the following Gauss curvature conditions, determine whether there can exist a closed geodesic on a surface satisfying the condition. In each case, either produce an example or prove that one cannot exist. (Note that this is not the same as asking whether there exists a geodesic 0-gon. Why?)
(a) $K>0$.
(b) $K=0$.
(c) $K<0$.
F. Let $T \subset \mathbb{R}^{3}$ be the torus of revolution obtained by revolving the curve $(r-2)^{2}+z^{2}=1$ about the z-axis (see Problem F on Assignment 4 from Math 442), endowed with the first fundamental form. Verify the Gauss-Bonnet theorem for T by computing each term separately.
G. Let S be the paraboloid defined by $z=x^{2}+y^{2}$, and for each $r>0$, let S_{r} be the portion of S where $z \leq r$. Verify the Gauss-Bonnet formula for S_{r} by computing each term separately.
H. Let φ and λ be latitude and longitude on the unit sphere (see Bär, p. 211), and let R be the region defined by $0 \leq \varphi \leq \pi / 4$. Verify the Gauss-Bonnet formula for R by computing each term separately.

