Reading:

- [Optional] Do Carmo, Section 4.5 (pp. 264-282).

Written Assignment:

A. Suppose S is a regular surface with a Riemannian metric g. A geodesic polygon in S is a simple region whose edges are geodesic segments, and with no cusp vertices. It is called a geodesic n-gon if it has exactly n ordinary vertices.
(a) Show that if S has nonpositive Gauss curvature, then S does not contain any geodesic n-gons with $0 \leq n \leq 2$.
(b) Now suppose S is the unit sphere with the first fundamental form. For which values of $n<3$ do there exist geodesic n-gons in S ? Prove your answer correct.
B. Suppose S is a regular surface with a Riemannian metric g. A geodesic triangle in S is a geodesic 3 -gon (see Problem A). The angle excess of a geodesic triangle T is the quantity

$$
E(T)=\left(\theta_{1}+\theta_{2}+\theta_{3}\right)-\pi
$$

where $\theta_{1}, \theta_{2}, \theta_{3}$ are the interior angle measures of T. Prove that every geodesic triangle satisfies $E(T)=\int_{T} K d A$.
C. Let $\left(\mathbb{M}_{-1}, g\right)$ be the hyperbolic plane. Prove that the area of every geodesic triangle in \mathbb{M}_{-1} is strictly less than π.
D. Two geodesic triangles in a surface S are said to be congruent if there is a correspondence between their vertices such that corresponding side lengths are equal and corresponding interior angle measures are equal. Let $\left(\mathbb{M}_{-1}, g\right)$ be the hyperbolic plane. Prove that geodesic triangles in \mathbb{M}_{-1} satisfy the $\boldsymbol{S A S}$ congruence theorem: If $\triangle A B C$ and $\triangle A^{\prime} B^{\prime} C^{\prime}$ are two geodesic triangles in \mathbb{M}_{-1} such that $L_{g}(\overline{A B})=L_{g}\left(\overline{A^{\prime} B^{\prime}}\right), L_{g}(\overline{A C})=L_{g}\left(\overline{A^{\prime} C^{\prime}}\right)$, and the interior angle measures at A and A^{\prime} are equal, then $\triangle A B C$ is congruent to $\triangle A^{\prime} B^{\prime} C^{\prime}$. [Hint: use isometries.]
E. Suppose S is an oriented surface with a Riemannian metric g and constant Gauss curvature k. For any $r>0$, let $D_{r}(0)$ and $S_{r}(0)$ denote the closed disk and circle of radius r centered at the origin in \mathbb{R}^{2} :

$$
D_{r}(0)=\left\{(u, v): u^{2}+v^{2} \leq r^{2}\right\}, \quad S_{r}(0)=\left\{(u, v): u^{2}+v^{2}=r^{2}\right\}
$$

Let $p \in S$, and suppose $F: U \rightarrow S$ is a Riemannian normal coordinate parametrization. For any $r>0$ such that $D_{r}(0) \subset U$, the geodesic disk of radius \boldsymbol{r} centered at \boldsymbol{p} is the set $D_{r}(p)=F\left(D_{r}(0)\right) \subset S$, and the geodesic circle of radius \boldsymbol{r} centered at \boldsymbol{p} is $S_{r}(p)=F\left(S_{r}(0)\right) \subset S$. Compute the area of $D_{r}(p)$, the circumference of $S_{r}(p)$, and the geodesic curvature of $S_{r}(p)$ in terms of k and r; and verify that they satisfy the Gauss-Bonnet formula. [Hint: use geodesic polar coordinates.]

