Differential Geometry Assignment #8 (2ND CORRECTION): Due 5/27/11

Reading:

• [Optional] Do Carmo, Section 4.5 (pp. 264–282).

Written Assignment:

- A. Suppose S is a regular surface with a Riemannian metric g. A **geodesic polygon** in S is a simple region whose edges are geodesic segments, and with no cusp vertices. It is called a **geodesic n-gon** if it has exactly n ordinary vertices.
 - (a) Show that if S has nonpositive Gauss curvature, then S does not contain any geodesic n-gons with $0 \le n \le 2$.
 - (b) Now suppose S is the unit sphere with the first fundamental form. For which values of n < 3 do there exist geodesic n-gons in S? Prove your answer correct.
- B. Suppose S is a regular surface with a Riemannian metric g. A **geodesic triangle** in S is a geodesic 3-gon (see Problem A). The **angle excess** of a geodesic triangle T is the quantity

$$E(T) = (\theta_1 + \theta_2 + \theta_3) - \pi_2$$

where $\theta_1, \theta_2, \theta_3$ are the interior angle measures of T. Prove that every geodesic triangle satisfies $E(T) = \int_T K \, dA$.

- C. Let (\mathbb{M}_{-1}, g) be the hyperbolic plane. Prove that the area of every geodesic triangle in \mathbb{M}_{-1} is strictly less than π .
- D. Two geodesic triangles in a surface S are said to be **congruent** if there is a correspondence between their vertices such that corresponding side lengths are equal and corresponding interior angle measures are equal. Let (\mathbb{M}_{-1}, g) be the hyperbolic plane. Prove that geodesic triangles in \mathbb{M}_{-1} satisfy the **SAS congruence theorem:** If $\triangle ABC$ and $\triangle A'B'C'$ are two geodesic triangles in \mathbb{M}_{-1} such that $L_g(\overline{AB}) = L_g(\overline{A'B'}), L_g(\overline{AC}) = L_g(\overline{A'C'}),$ and the interior angle measures at A and A' are equal, then $\triangle ABC$ is congruent to $\triangle A'B'C'$. [Hint: use isometries.]
- E. Suppose S is an oriented surface with a Riemannian metric g and constant Gauss curvature k. For any r > 0, let $D_r(0)$ and $S_r(0)$ denote the closed disk and circle of radius r centered at the origin in \mathbb{R}^2 :

$$D_r(0) = \{(u, v) : u^2 + v^2 \le r^2\}, \qquad S_r(0) = \{(u, v) : u^2 + v^2 = r^2\}$$

Let $p \in S$, and suppose $F: U \to S$ is a Riemannian normal coordinate parametrization. For any r > 0such that $D_r(0) \subset U$, the **geodesic disk of radius r centered at p** is the set $D_r(p) = F(D_r(0)) \subset S$, and the **geodesic circle of radius r centered at p** is $S_r(p) = F(S_r(0)) \subset S$. Compute the area of $D_r(p)$, the circumference of $S_r(p)$, and the geodesic curvature of $S_r(p)$ in terms of k and r; and verify that they satisfy the Gauss-Bonnet formula. [Hint: use geodesic polar coordinates.]