Reading:

- Bär, Sections 4.10, 4.11 (again).
- Bär, Section 3.4 (again).
- Bär, p. 182 in Section 4.5 (again).
- [Optional] Do Carmo, Section 2.6 (pp. 103-108).

Written Assignment:

A. The map below is created using sinusoidal projection, which is the parametrization $F: U \rightarrow S^{2}$ defined by

$$
F(u, v)=\left(\cos \left(\frac{u}{\cos v}\right) \cos v, \sin \left(\frac{u}{\cos v}\right) \cos v, \sin v\right),
$$

defined on the domain $U=\{(u, v):|v|<\pi / 2,|u|<\pi|\cos v|\}$. Compute the matrix of the first fundamental form for this parametrization, and determine if it is conformal, area-preserving, or neither.

B. The Poincaré half-plane model of the hyperbolic plane is the surface $H P=\{(r, s): s>0\}$ with the Riemannian metric

$$
\left(g_{i j}(r, s)\right)=\left(\begin{array}{cc}
\frac{1}{s^{2}} & 0 \\
0 & \frac{1}{s^{2}}
\end{array}\right)
$$

(a) For arbitrary $r_{0} \in \mathbb{R}$, find a parametrization of the vertical line $r_{0}=$ constant that is unit-speed with respect to this metric, and prove that it is a geodesic.
(b) For any real number a, prove that the map $\tau_{a}: H P \rightarrow H P$ given by $\tau_{a}(r, s)=(r+a, s)$ is an isometry.
(c) For any positive real number b, prove that the map $\delta_{b}: H P \rightarrow H P$ given by $\delta_{b}(r, s)=(b r, b s)$ is an isometry.
C. Bär, Exercise 4.37 (p. 222). [Note that for some reason, Bär labels his coordinates (v, u) in $H P$, so u labels the vertical axis, not the horizontal one. Don't take the phrase "vertices at infinity" too seriously: the region Δ is just the set of all points $(v, u) \in H P$ such that $|v| \leq 1$ and $u^{2}+v^{2} \geq 1$.]
D. Let S^{2} be the unit sphere in \mathbb{R}^{3}, with the first fundamental form as its Riemannian metric, and with the orientation determined by the outward unit normal. For fixed $\varphi \in(-\pi / 2, \pi / 2)$, let $c: \mathbb{R} \rightarrow S^{2}$ be the latitude circle parametrized by $c(t)=(\cos \varphi \cos t, \cos \varphi \sin t, \sin \varphi)$. Calculate the geodesic curvature of c.

