
Math 443 Differential Geometry Spring 2011

Assignment #5: Due 5/2/11

MIDTERM EXAM: Wednesday, May 4, in class.

Written Assignment (not to be handed in for a grade):

A. Exercise 4.32 (page 209).

B. Exercise 4.33 (page 209).

C. Let S2 denote the unit sphere in R
3, with its first fundamental form. Consider the following map

F : R2 → R
3:

F (ϕ, x) = (sechx cosϕ, sechx sinϕ, tanhx).

(a) Show that if (ϕ, x) is restricted a a suitably small open set in the plane, F is a local parametrization
of S2.

(b) Show that meridians and latitude lines on the sphere are images under F of vertical and horizontal
straight lines in R

2.

(c) Show that the image of a nonvertical and nonhorizontal straight line in R
2 is a curve that makes

a constant angle with latitude lines.

D. A point on a surface (with the first fundamental form) is said to be umbilic if the principal curvatures
are equal at that point. Find all umbilic points on the ellipsoid given by
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where a, b, c are positive constants.

E. Let S ⊂ R
3 be the surface {(x, y, z) : y > 0, z = 0} (the positive-y portion of the xy-plane), with the

global parametrization F (u, v) = (u, v, 0) for u ∈ R and v > 0. Let g be the Riemannian metric on S
with the following matrix in this parametrization:
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Let M−1 be the hyperbolic plane, and define a map F : S → M−1 by

F (x, y, 0) =

(
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)
.

Prove that F is a global isometry.

F. Compute the Gauss curvature of the surface S of the preceding problem. [Hint: you shouldn’t have to
do any complicated computations.]


