MIDTERM EXAM: Wednesday, May 4, in class.

## Written Assignment (not to be handed in for a grade):

A. Exercise 4.32 (page 209).
B. Exercise 4.33 (page 209).
C. Let $S^{2}$ denote the unit sphere in $\mathbb{R}^{3}$, with its first fundamental form. Consider the following map $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ :

$$
F(\varphi, x)=(\operatorname{sech} x \cos \varphi, \operatorname{sech} x \sin \varphi, \tanh x) .
$$

(a) Show that if $(\varphi, x)$ is restricted a a suitably small open set in the plane, $F$ is a local parametrization of $S^{2}$.
(b) Show that meridians and latitude lines on the sphere are images under $F$ of vertical and horizontal straight lines in $\mathbb{R}^{2}$.
(c) Show that the image of a nonvertical and nonhorizontal straight line in $\mathbb{R}^{2}$ is a curve that makes a constant angle with latitude lines.
D. A point on a surface (with the first fundamental form) is said to be umbilic if the principal curvatures are equal at that point. Find all umbilic points on the ellipsoid given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

where $a, b, c$ are positive constants.
E. Let $S \subset \mathbb{R}^{3}$ be the surface $\{(x, y, z): y>0, z=0\}$ (the positive- $y$ portion of the $x y$-plane), with the global parametrization $F(u, v)=(u, v, 0)$ for $u \in \mathbb{R}$ and $v>0$. Let $g$ be the Riemannian metric on $S$ with the following matrix in this parametrization:

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
\frac{1}{v^{2}} & 0 \\
0 & \frac{1}{v^{2}}
\end{array}\right)
$$

Let $\mathbb{M}_{-1}$ be the hyperbolic plane, and define a map $F: S \rightarrow \mathbb{M}_{-1}$ by

$$
F(x, y, 0)=\left(\frac{x}{y}, \frac{x^{2}+y^{2}-1}{2 y}, \frac{x^{2}+y^{2}+1}{2 y}\right)
$$

Prove that $F$ is a global isometry.
F. Compute the Gauss curvature of the surface $S$ of the preceding problem. [Hint: you shouldn't have to do any complicated computations.]

