Assignment \#3 (CORRECTED): Due 4/22/11

Reading:

- Nothing new for this assignment. Make sure you've read up through 4.5 carefully, and start looking over 4.6 for next week.

Written Assignment:

A. Exercise 4.18 (p. 177).
B. Exercise 4.19 (p. 177).
C. Exercise 4.20 (p. 177).
D. Exercise 4.21 (p. 179).
E. Let $S \subset \mathbb{R}^{3}$ be the paraboloid defined by the equation $z=x^{2}+y^{2}$, and let $c: \mathbb{R} \rightarrow S$ be the geodesic with initial conditions $c(0)=(1,0,1)$ and $\dot{c}(0)=(-1, b,-2)$ for some positive constant b. It can be shown that there is a positive constant a such that the z-coordinate of $c(t)$ decreases until it becomes equal to a, and increases from then on (you don't have to prove this). Find a. [Hint: Use Clairaut's theorem.]

