I. Reading:

- do Carmo, Section 4-6 (pp. 283-294).

II. Practice problems:

1. do Carmo, Section 4-5 (pp. 282-283) \#1, 4, 8

III. Required problems:

1. do Carmo, Section 4-5 (pp. 282-283) \#6.
2. do Carmo, Section 4-5 (pp. 282-283) \#7.
3. Let $X(u, v)=(\sin u \cos v, \sin u \sin v, \cos u)$ be the spherical coordinate parametrization for S^{2}, and let $R=X([0, \pi / 4] \times[\pi / 4, \pi / 2])$. Verify the Gauss-Bonnet formula for R by computing each term separately.
4. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be smooth functions with $f(v)>0$ for all v, and let S be the surface of revolution in \mathbb{R}^{3} generated by the curve $(y, z)=(f(v), g(v))$. Suppose that $f^{\prime}(a)=f^{\prime}(b)=0$ for some $a<b \in \mathbb{R}$, and let $R \subset S$ be the regular region obtained by restricting f and g to the closed interval $[a, b]$. Show that $\iint_{R} K d \sigma=0$.
