I. Reading:

- Reread do Carmo, Section 4-5.

II. Required problems:

1. do Carmo, Section 4-5 (pp. 282-283), \#5. (The problem should be rephrased as follows.)

Let C be a parallel of colatitude φ on the unit sphere S^{2}, oriented by the outward normal, and let w_{0} be a unit vector tangent to C at a point $p \in C$ (cf. Example 1, Sec. 4-4). Take the parallel transport of w_{0} along C, and let $\Delta \theta$ be the angle between w_{0} and the value of its parallel transport after a complete turn. Show directly (not by invoking the formula on p. 271) that $\Delta \theta=2 \pi(1-\cos \varphi)$, and that

$$
\lim _{\varphi \rightarrow 0} \frac{\Delta \theta}{A}=1=\text { curvature of } S^{2}
$$

where A is the area of the region R of S^{2} bounded by C.
2. If $S \subset \mathbb{R}^{3}$ is a regular surface, a geodesic polygon in S is a simple region $R \subset S$ whose regular arcs are all segments of geodesics.
(a) Give an example of a geodesic polygon with no vertices.
(b) Give an example of a geodesic polygon with exactly two vertices.
(c) If S has everywhere nonpositive Gaussian curvature, show that every geodesic polygon in S has at least three vertices.

