Math 443Topics in Topology and GeometryAssignment #6 (CORRECTED): Due Wednesday, 5/21/03

I. Reading:

• Reread do Carmo, Section 4-5.

II. Required problems:

- 1. do Carmo, Section 4-5 (pp. 282–283), #5. (The problem should be rephrased as follows.)
 - Let C be a parallel of colatitude φ on the unit sphere S^2 , oriented by the outward normal, and let w_0 be a unit vector tangent to C at a point $p \in C$ (cf. Example 1, Sec. 4-4). Take the parallel transport of w_0 along C, and let $\Delta \theta$ be the angle between w_0 and the value of its parallel transport after a complete turn. Show directly (not by invoking the formula on p. 271) that $\Delta \theta = 2\pi (1 - \cos \varphi)$, and that

$$\lim_{\varphi \to 0} \frac{\Delta \theta}{A} = 1 = \text{curvature of } S^2,$$

where A is the area of the region R of S^2 bounded by C.

- 2. If $S \subset \mathbb{R}^3$ is a regular surface, a *geodesic polygon* in S is a simple region $R \subset S$ whose regular arcs are all segments of geodesics.
 - (a) Give an example of a geodesic polygon with no vertices.
 - (b) Give an example of a geodesic polygon with exactly two vertices.
 - (c) If S has everywhere nonpositive Gaussian curvature, show that every geodesic polygon in S has at least three vertices.