Math 442

Differential Geometry Assignment #5 Supplementary Exercises (CORRECTED)

- **S11.** Suppose $\varphi \colon [a, b] \to S^1$ is a continuous closed curve in the circle, and $\tilde{\varphi} \colon [c, d] \to S^1$ is a forward reparametrization of φ . Show that $\deg \varphi = \deg \tilde{\varphi}$.
- **S12.** Suppose $\sigma: [a, b] \to \mathbb{R}^2$ is a continuous closed plane curve and p is a point in \mathbb{R}^2 that is not in the trace of σ .
 - (a) If $\tilde{\sigma}: [c,d] \to \mathbb{R}^2$ is a forward reparametrization of σ , show that $\iota_p(\sigma) = \iota_p(\tilde{\sigma})$.
 - (b) If $\rho : \mathbb{R}^2 \to \mathbb{R}^2$ is a rigid motion, show that $\iota_{\rho(p)}(\rho \circ \sigma) = \iota_p(\sigma)$.
- **S13.** Suppose $\sigma: [0, 2\pi] \to \mathbb{R}^2$ is a smooth simple closed plane curve. We don't know the formula for σ , but we're given that

$$\sigma'(s) = (\sin(s + \cos 2s), \cos(s + \cos 2s)) \quad \text{for all } s \in [0, 2\pi].$$

Compute the following:

- (a) The length of σ .
- (b) The oriented curvature of σ .
- **S14.** Suppose $\sigma: I \to \mathbb{R}^2$ is a smooth unit-speed plane curve, and $\theta: I \to \mathbb{R}$ is a smooth function such that $\sigma'(s) = (\cos \theta(s), \sin \theta(s))$ for all $s \in I$. Show that the oriented curvature of σ is $\tilde{\kappa}(s) = \theta'(s)$.

Winter 2013