## Assignment \#5

 Supplementary Exercises (CORRECTED)S11. Suppose $\varphi:[a, b] \rightarrow S^{1}$ is a continuous closed curve in the circle, and $\tilde{\varphi}:[c, d] \rightarrow S^{1}$ is a forward reparametrization of $\varphi$. Show that $\operatorname{deg} \varphi=\operatorname{deg} \tilde{\varphi}$.
S12. Suppose $\sigma:[a, b] \rightarrow \mathbb{R}^{2}$ is a continuous closed plane curve and $p$ is a point in $\mathbb{R}^{2}$ that is not in the trace of $\sigma$.
(a) If $\tilde{\sigma}:[c, d] \rightarrow \mathbb{R}^{2}$ is a forward reparametrization of $\sigma$, show that $\iota_{p}(\sigma)=$ $\iota_{p}(\tilde{\sigma})$.
(b) If $\rho: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a rigid motion, show that $\iota_{\rho(p)}(\rho \circ \sigma)=\iota_{p}(\sigma)$.

S13. Suppose $\sigma:[0,2 \pi] \rightarrow \mathbb{R}^{2}$ is a smooth simple closed plane curve. We don't know the formula for $\sigma$, but we're given that

$$
\sigma^{\prime}(s)=(\sin (s+\cos 2 s), \cos (s+\cos 2 s)) \quad \text { for all } s \in[0,2 \pi] .
$$

Compute the following:
(a) The length of $\sigma$.
(b) The oriented curvature of $\sigma$.

S14. Suppose $\sigma: I \rightarrow \mathbb{R}^{2}$ is a smooth unit-speed plane curve, and $\theta: I \rightarrow \mathbb{R}$ is a smooth function such that $\sigma^{\prime}(s)=(\cos \theta(s), \sin \theta(s))$ for all $s \in I$. Show that the oriented curvature of $\sigma$ is $\tilde{\kappa}(s)=\theta^{\prime}(s)$.

