Assignment \#4

 Supplementary Exercises (CORRECTED)S8. Let $I \subseteq \mathbb{R}$ be an open interval, and let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a smooth regular curve. Suppose $t_{0} \in I$ is a point where $\|\sigma(t)\|$ attains its maximum value. Prove that $\kappa\left(t_{0}\right) \geq 1 /\left\|\sigma\left(t_{0}\right)\right\|$.

S9. Let a and b be real numbers such that $0<a<b$, and let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be the plane curve $\sigma(t)=(a \cos t, b \sin t)$. (Its trace is an ellipse with major axis $2 b$ and minor axis $2 a$. Note that this parametrization is not necessarily unit-speed.) Find the maximum and minimum values of the oriented curvature of σ in terms of a and b.

S10. Suppose $I \subseteq \mathbb{R}$ is an interval, $s_{0} \in I$, and $f: I \rightarrow \mathbb{R}$ is a smooth function. Define $\theta: I \rightarrow \mathbb{R}$ and $\sigma: I \rightarrow \mathbb{R}^{2}$ by

$$
\begin{aligned}
& \theta(s)=\int_{s_{0}}^{s} f(u) d u, \\
& \sigma(s)=\left(\int_{s_{0}}^{s} \cos \theta(u) d u, \int_{s_{0}}^{s} \sin \theta(u) d u\right) .
\end{aligned}
$$

Prove that σ is a unit-speed curve whose oriented curvature is $\tilde{\kappa}(s)=f(s)$.

