Differential Geometry Assignment #4 Supplementary Exercises (CORRECTED)

- **S8.** Let $I \subseteq \mathbb{R}$ be an open interval, and let $\sigma: I \to \mathbb{R}^3$ be a smooth regular curve. Suppose $t_0 \in I$ is a point where $\|\sigma(t)\|$ attains its maximum value. Prove that $\kappa(t_0) \geq 1/\|\sigma(t_0)\|$.
- **S9.** Let a and b be real numbers such that 0 < a < b, and let $\sigma \colon \mathbb{R} \to \mathbb{R}^2$ be the plane curve $\sigma(t) = (a \cos t, b \sin t)$. (Its trace is an ellipse with major axis 2b and minor axis 2a. Note that this parametrization is not necessarily unit-speed.) Find the maximum and minimum values of the oriented curvature of σ in terms of a and b.
- **S10.** Suppose $I \subseteq \mathbb{R}$ is an interval, $s_0 \in I$, and $f: I \to \mathbb{R}$ is a smooth function. Define $\theta: I \to \mathbb{R}$ and $\sigma: I \to \mathbb{R}^2$ by

$$\theta(s) = \int_{s_0}^{s} f(u) \, du,$$

$$\sigma(s) = \left(\int_{s_0}^{s} \cos \theta(u) \, du, \int_{s_0}^{s} \sin \theta(u) \, du \right).$$

Prove that σ is a unit-speed curve whose oriented curvature is $\tilde{\kappa}(s) = f(s)$.

Winter 2013