Math 442

Differential Geometry W Assignment #2 Supplementary Exercises (CORRECTED 1/20/13)

S4. Let $\alpha, \beta: I \to \mathbb{R}^n$ be smooth functions. Prove that

$$\frac{d}{dt}\langle \alpha(t),\beta(t)\rangle = \langle \alpha'(t),\beta(t)\rangle + \langle \alpha(t),\beta'(t)\rangle.$$

- **S5.** Let A be an 3×3 matrix. Then A is said to be **orthogonal** if $A^T A$ is equal to the identity matrix (where A^T denotes the transpose of A). Show that the following are equivalent.
 - (a) A is an orthogonal matrix.
 - (b) The columns of A are orthonormal.
 - (c) $\langle Av, Aw \rangle = \langle v, w \rangle$ for all $v, w \in \mathbb{R}^3$.

[Hint: It might be useful to show that $\langle v, w \rangle = v^T w$ for vectors v, w, thought of as column matrices, and that $(Av)^T = v^T A^T$.]

- **S6.** Find an explicit unit-speed parametrization of the curve $\sigma: (0, \infty) \to \mathbb{R}^2$ given by $\sigma(t) = (t^2, t^3)$. Be sure to specify the domain of the new parametrization.
- **S7.** Let $\sigma: I \to \mathbb{R}^3$ be a smooth, unit-speed, biregular curve, and $s_0 \in I$. Show that there is a unique unit-speed parametrized circle $\gamma: \mathbb{R} \to \mathbb{R}^3$, called the *osculating circle*, such that

$$\begin{aligned} \gamma(s_0) &= \sigma(s_0), \\ \gamma'(s_0) &= \sigma'(s_0), \\ \gamma''(s_0) &= \sigma''(s_0). \end{aligned}$$

Show that the radius of the osculating circle is $1/\kappa(s_0)$. (You may use the fact that every unit-speed parametrized circle of radius r can be written in the form

$$\gamma(s) = \mathbf{p_0} + \left(r\cos\frac{s}{r}\right)\mathbf{v} + \left(r\sin\frac{s}{r}\right)\mathbf{w}$$

for some $\mathbf{p}_0 \in \mathbb{R}^3$ and some pair of orthogonal unit vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$.)