Assignment \#2

Supplementary Exercises (CORRECTED 1/20/13)
S4. Let $\alpha, \beta: I \rightarrow \mathbb{R}^{n}$ be smooth functions. Prove that

$$
\frac{d}{d t}\langle\alpha(t), \beta(t)\rangle=\left\langle\alpha^{\prime}(t), \beta(t)\right\rangle+\left\langle\alpha(t), \beta^{\prime}(t)\right\rangle
$$

S5. Let A be an 3×3 matrix. Then A is said to be orthogonal if $A^{T} A$ is equal to the identity matrix (where A^{T} denotes the transpose of A). Show that the following are equivalent.
(a) A is an orthogonal matrix.
(b) The columns of A are orthonormal.
(c) $\langle A v, A w\rangle=\langle v, w\rangle$ for all $v, w \in \mathbb{R}^{3}$.
[Hint: It might be useful to show that $\langle v, w\rangle=v^{T} w$ for vectors v, w, thought of as column matrices, and that $(A v)^{T}=v^{T} A^{T}$.]

S6. Find an explicit unit-speed parametrization of the curve $\sigma:(0, \infty) \rightarrow \mathbb{R}^{2}$ given by $\sigma(t)=\left(t^{2}, t^{3}\right)$. Be sure to specify the domain of the new parametrization.

S7. Let $\sigma: I \rightarrow \mathbb{R}^{3}$ be a smooth, unit-speed, biregular curve, and $s_{0} \in I$. Show that there is a unique unit-speed parametrized circle $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$, called the osculating circle, such that

$$
\begin{aligned}
\gamma\left(s_{0}\right) & =\sigma\left(s_{0}\right) \\
\gamma^{\prime}\left(s_{0}\right) & =\sigma^{\prime}\left(s_{0}\right) \\
\gamma^{\prime \prime}\left(s_{0}\right) & =\sigma^{\prime \prime}\left(s_{0}\right)
\end{aligned}
$$

Show that the radius of the osculating circle is $1 / \kappa\left(s_{0}\right)$. (You may use the fact that every unit-speed parametrized circle of radius r can be written in the form

$$
\gamma(s)=\mathbf{p}_{\mathbf{0}}+\left(r \cos \frac{s}{r}\right) \mathbf{v}+\left(r \sin \frac{s}{r}\right) \mathbf{w}
$$

for some $\mathbf{p}_{\mathbf{0}} \in \mathbb{R}^{3}$ and some pair of orthogonal unit vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^{3}$.)

