Assignment \#1

Supplementary Exercises
(CORRECTED 1/10/2013)
S1. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is a function. We say f is an affine map if it can be written in the form $f(x)=f_{0}(x)+b$ for some linear map f_{0} and some $b \in \mathbb{R}^{n}$. If f is an affine map, show that f is bijective if and only if f_{0} is bijective. If this is the case, write a formula for f^{-1}.

S2. Suppose $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is an affine map, written as $f(x)=f_{0}(x)+b$ for some linear map f_{0} and some $b \in \mathbb{R}^{n}$. Show that for each $p \in \mathbb{R}^{m}, d f_{p}$ is equal to the map f_{0}. In particular, if f is a linear map, show that it is its own differential at each point: for all $p \in \mathbb{R}^{m}, d f_{p}=f$.

S3. Let C be the trace of the parametrized curve σ of Example 1.1.15. Find a polynomial function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that $C=f^{-1}(\{0\})$, and determine all points $(x, y) \in C$ where $d f_{(x, y)}=0$.

