
Math 442 Differential Geometry Winter 2011

Assignment #7: Due 2/25/11

Reading:

• Bär, Sections 3.5, 3.6, and the following parts of Section 3.8: Example 3.8.12 (p. 139) and subsection
3.8.3 (pp. 143–145).

Written Assignment:

Note: In these problems, you’ll need the following definitions. Suppose S ⊂ R
3 is a regular surface, p ∈ S,

Wp is the Weingarten map of S at p, and (wj
i ) is the matrix of Wp with respect to some basis of TpS. The

Gauss curvature of S at p is

K(p) = det(Wp) = w1
1w

2
2 − w2

1w
1
2,

and the mean curvature of S at p is

H(p) =
1

2
trace(Hp) =

1

2
(w1

1 + w2
2).

A regular surface is called a minimal surface if its mean curvature is identically zero. (We’ll discuss where
this name comes from later.)

A. Let U ⊂ R
2 be an open set, let f : U → R be a smooth function, and let S ⊂ R

3 be the graph of
f . Compute the matrix of the second fundamental form of S with respect to the parametrization of
Example 3.1.4 (p. 82). [You may quote the results of previously assigned homework problems.]

B. Bär, Exercise 3.20 (p. 139).

C. Let H = {(u, v) : u > 0} be the right half-plane, and let C ⊂ H be a regular 1-manifold. Suppose for
simplicity that C has a global parametrization: in other words, C is the image of a regular parametrized
curve c : I → H , with component functions c(t) = (r(t), s(t)) (so r(t) > 0 for all t ∈ I). Let SC denote
the surface of revolution determined by C as in Assignment 4. For all of the following problems, use
a parametrization of the form F (t, ϕ) = (r(t) cosϕ, r(t) sinϕ, s(t)) with (t, ϕ) restricted to a suitable
domain (which you don’t have to specify explicitly).

(a) Show that the following formula gives a unit normal field on the image of F :

N(F (t, ϕ)) =
1

√
ṙ(t)2 + ṡ(t)2

(
ṡ(t) cosϕ, ṡ(t) sinϕ, −ṙ(t)

)
.

(b) Using the basis for TpSC determined by F and the normal field N defined above, compute the
matrices of the first fundamental form, second fundamental form, and Weingarten map at an
arbitrary point p = F (t, ϕ) ∈ S in terms of r(t), s(t), and their derivatives. Verify that your
formulas match the computations on pp. 143–144 of the textbook in the special case in which
s(t) ≡ t.

(c) Now assume that c is unit-speed, and prove that the Gauss curvature at any point p = F (s, t) ∈ S
can be expressed as

K(p) = − r̈(t)

r(t)
.

[Hint: first prove that r̈(t)ṙ(t) + s̈(t)ṡ(t) ≡ 0.]

(d) Prove that the Gauss curvature of S is everywhere zero if and only if C is contained in a straight
line. [Remark: this shows that the only surfaces of revolution with zero Gauss curvature are
portions of planes, cones, and cylinders.]

D. Bär, Exercise 3.31 (p. 145). [Hint: personally, I find the hint in the back of the book confusing.
My suggestion is just to use the formulas you derived in the preceding problem for a surface of
revolution generated by a non-unit-speed curve. The identities cos t = cos2(t/2) − sin2(t/2) and
sin t = 2 sin(t/2) cos(t/2) will probably be useful.]


