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Sample problem writeup

§13, Problem 4(a,b):

When confronted with a family of different topologies on the same set, one might wonder whether
there is a topology that is contained in all of them, or that contains all of them. Of course, the
trivial topology is contained in every other topology, and the discrete topology contains every other,
but these are not very interesting. A much more compelling question is whether there is a “largest”
topology that is contained in every topology in the given family, or a “smallest” topology that
contains them all. The purpose of this note is to show that both of these do exist, and in fact are
uniquely determined by the given collection of topologies.

If a topology T is contained in each of the topologies in the given collection, then it must necessarily
be contained in their intersection. The most obvious candidate for a largest such topology, therefore,
would be that intersection itself, provided it is a topology. Luckily, as the following lemma shows,
that is always the case.

Lemma 1. Let X be a set. If {Tα}α∈J is a family of topologies on X, then
⋂

α Tα is a topology on
X.

Proof. For brevity, let us denote the intersection
⋂

α Tα by T. Note that each Tα is a collection of
subsets of X , so T is itself a collection of subsets of X . We need to show that T satisfies the three
defining properties of a topology.

First, because ∅ ∈ Tα and X ∈ Tα for each α ∈ J , it follows immediately that ∅ ∈ T and X ∈ T.

Second, to show that T is closed under arbitrary unions, suppose {Uβ}β∈K is an arbitrary collection
of elements of T. This means by definition that for each choice of α, Uβ ∈ Tα for every β. Since
each Tα is closed under arbitrary unions, it follows that

⋃
β Uβ ∈ Tα. This is true for every α, so⋃

β Uβ is an element of the intersection of all the sets Tα, which is T.

Finally, we need to show that T is closed under finite intersections. The argument goes just as in
the preceding paragraph: If U1, . . . , Un are elements of T, then each Ui is in Tα for every α, and
thus so is the intersection U1 ∩ · · · ∩ Un by virtue of the fact that each Tα is a topology.

Reasoning by analogy with the preceding lemma, one might be tempted to predict that the union
of a family of topologies is again a topology, but that turns out to be false. To see why, consider
two simple topologies on a 3-element set X = {a, b, c}:

T1 = {∅, X, {a, b}},
T2 = {∅, X, {a, c}}.

It straightforward to check that T1 and T2 are topologies. But now let U denote their union:

U = T1 ∪ T2 = {∅, X, {a, b}, {a, c}}.

This is not a topology because it is not closed under finite intersections: The subsets {a, b} and
{a, c} are elements of U, but their intersection {a} is not.

To correct this problem, we can “fill out” the topology by throwing in all unions of finite intersections
of arbitrary elements from any of the topologies in the collection. The next theorem, which is the
main result of this note, shows how this is done.
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Theorem 2. Let {Tα}α∈J be a family of topologies on a set X, and define

T =
⋂

α∈J

Tα,

U =
⋃

α∈J

Tα,

T̃ = {unions of finite intersections of elements of U}.

Then T is the unique largest topology on X that is contained in Tα for every α ∈ J, and T̃ is the
unique smallest topology on X that contains Tα for every α.

Proof. It is easy to dispense with the uniqueness issue. If two topologies T and T′are both largest
topologies that are contained in each Tα, then the fact that T is a largest such topology implies
that T′ ⊂ T, and the fact that T′ is largest implies that T ⊂ T′. Therefore, T = T′. The same
argument, with “largest” and “smallest” interchanged and containments reversed, applies to small-
est topologies containing each Tα. Thus the largest and smallest such topologies, if they exist, are
unique, so we need only prove existence.

We begin with T. Lemma 1 shows that T is a topology, and by definition it is contained in Tα

for every α. It remains only to show that it is the largest such topology. To see this, suppose T′

is any topology that is contained in Tα for each α. Then, by definition of the intersection, T′ is
contained in T, which shows that T is larger than or equal to T′. This completes the proof that T

is the largest topology contained in every Tα.

Turning now to the other case, note first that the definition of T̃ means that it is precisely the
topology generated by the subbasis U. Munkres [M, page 82] proves that this is indeed a topology.
Because an element B ∈ U is, in particular, a union of finite intersections of elements of U (for
example, B = (B ∩B)∪ (B ∩B)!), it follows that T̃ contains U and therefore contains Tα for every
α.

It remains only to show that T̃ is smaller than any other topology that contains every Tα. Suppose
T̃′ is any such topology. Since it contains each Tα, it contains their union U. Because every
topology is closed under arbitrary unions and finite intersections, it follows that all unions of finite
intersections of elements of U are in T̃′, which is to say that T̃ ⊂ T̃′. Thus T̃ is the smallest such
topology.
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