I. Reading:

- Read Patty, §2.2.
- Skim Patty, §2.6. (We will not cover §§2.3 through 2.5.)

II. Practice problems:

1. Patty, Exercises 2.1 (pp. 65–67) #1, 2, 6, 7, 16, 17, 21.

III. Required problems:

- 1. Patty, Exercises 2.1 (pp. 65–67) #4.
- 2. Patty, Exercises 2.1 (pp. 65–67) #5.
- 3. Patty, Exercises 2.1 (pp. 65–67) #8.
- 4. Patty, Exercises 2.1 (pp. 65–67) #9.
- 5. Patty, Exercises 2.1 (pp. 65–67) #15.
- 6. Patty, Exercises 2.1 (pp. 65–67) #22.
- 7. (a) Prove the following generalization of the pasting lemma (Theorem 2.15): Let X and Y be topological spaces, let A₁,..., A_k be closed subsets of X such that X = A₁ ∪ ··· ∪ A_k, and for each i = 1,..., k, let f_i: A_i → Y be a continuous function such that f_i|_{A_i∩A_j} = f_j|_{A_i∩A_j} for each i and j. Then there is a unique continuous function h: X → Y such that h|_{A_i} = f_i for each i.
 - (b) By considering the space $X = [0, 1] \subset \mathbb{R}$ with the usual topology, and the subspaces $A_0 = \{0\}, a_i = [1/(i+1), 1/i]$ for i = 1, 2, ..., show that the previous result is false if the sets $\{A_1, \ldots, A_k\}$ are replaced by an infinite sequence of closed sets.

Math 441