(i) Theorem: For any nonzero real numbers x, y and any integer $n, x^{n} y^{n}=(x y)^{n}$.

Proof: The case $n \geq 0$ is taken care of by Exercise 5.7(i). For the case in which $n<0$, let $k=-n$, so $k>0$.
Notice first that by the definition of negative exponents, we have $x^{-k}=\left(x^{k}\right)^{-1}$. It follows that

$$
\begin{equation*}
x^{-k} x^{k}=1, \tag{1}
\end{equation*}
$$

and similarly that

$$
\begin{array}{r}
y^{-k} y^{k}=1, \\
(x y)^{-k}(x y)^{k}=1 . \tag{3}
\end{array}
$$

By the result of Exercise 5.7(i), we know that

$$
(x y)^{k}=x^{k} y^{k} .
$$

Multiplying both sides of this equation by $(x y)^{-k} x^{-k} y^{-k}$ and using (1)-(3) to simplify, we obtain

$$
x^{-k} y^{-k}=(x y)^{-k} .
$$

Substituting $k=-n$, we obtain the desired equation.
(ii) Theorem: For any nonzero real x and any integers m and $n, x^{m+n}=x^{m} x^{n}$.

Proof: There are four cases, depending on the signs of m and n.
The case in which $m \geq 0$ and $n \geq 0$ is taken care of by Exercise 5.7(ii).
For the second case, assume that $m \geq 0$ and $n<0$. Let $k=-n$, so what we have to prove is

$$
\begin{equation*}
x^{m-k}=x^{m} x^{-k} . \tag{4}
\end{equation*}
$$

We consider two possibilities: either $m \geq k$ or $m<k$. If $m \geq k$, Exercise 5.7(ii) yields

$$
x^{m-k} x^{k}=x^{m}
$$

Multiplying both sides by x^{-k} and simplifying (using equation (1) from the preceding proof), we obtain (4). On the other hand, if $m<k$, we apply Exercise 5.7(ii) again to obtain

$$
x^{k}=x^{m} x^{k-m} .
$$

Multiplying both sides by $x^{-k} x^{m-k}$ and simplifying once again yields (4).
The third case, in which $n \geq 0$ and $m<0$, is handled in exactly the same way, with the roles of m and n reversed.

Finally, for the last case, assume that $m<0$ and $n<0$. Let $k=-m$ and $l=-n$, so what we have to prove is

$$
\begin{equation*}
x^{-k-l}=x^{-k} x^{-l} . \tag{5}
\end{equation*}
$$

We use Exercise 5.7(ii) one more time to conclude that

$$
x^{k} x^{l}=x^{k+l} .
$$

Multiplying both sides by $x^{-k-l} x^{-k} x^{-l}$ and simplifying, we obtain (5) as desired.
You may turn in a paragraph-style proof of part (iii) for extra credit if you wish.

