Handout \#5: Common Properties of Numbers (CORRECTED)

These are some of the elementary properties of numbers that can be proved from the axioms on Handout $\# 1$. These can be proved in the order listed - that is, each statement can be proved using only the axioms and statements that appear before it on the list.

In all of the properties below, a, b, c, d represent arbitrary real numbers unless otherwise specified.

1. Properties of zero
(a) $0 \times a=0$.
(b) If $a b=0$, then $a=0$ or $b=0$.
2. Properties of Signs
(a) $-0=0$.
(b) $-(-a)=a$.
(c) $-a=(-1) a$.
(d) $(-a) b=-(a b)=a(-b)$.
(e) $(-a)(-b)=a b$.
3. Extensions of the distributive property
(a) $-(a+b)=(-a)+(-b)=-a-b$.
(b) $-(a-b)=b-a$.
(c) $-(-a-b)=a+b$.
(d) $a+a=2 a$.
(e) $a(b-c)=a b-a c=(b-c) a$.
(f) $(a+b)(c+d)=a c+a d+b c+b d$.
(g) $(a+b)(c-d)=a c-a d+b c-b d=(c-d)(a+b)$.
(h) $(a-b)(c-d)=a c-a d-b c+b d$.
4. Properties of inverses
(a) $1^{-1}=1$.
(b) $\left(a^{-1}\right)^{-1}=a$ if a is nonzero.
(c) $(-a)^{-1}=-\left(a^{-1}\right)$ if a is nonzero.
(d) $(a b)^{-1}=a^{-1} b^{-1}$ if a and b are nonzero.
(e) $(a / b)^{-1}=b / a$ if a and b are nonzero.
5. Properties of quotients
(a) $a / 1=a$.
(b) $(a / b)(c / d)=(a c) /(b d)$ if b and d are nonzero.
(c) $(a / b) /(c / d)=(a d) /(b c)$ if b, c, and d are nonzero.
(d) $(a c) /(b c)=a / b$ if b and c are nonzero.
(e) $(-a) / b=-(a / b)=a /(-b)$ if b is nonzero.
(f) $(-a) /(-b)=a / b$ if b is nonzero.
(g) $a / b+c / d=(a d+b c) /(b d)$ if b and d are nonzero.
(h) $a / b-c / d=(a d-b c) /(b d)$ if b and d are nonzero.
6. Properties of inequalities
(a) $0<1$.
(b) If $a<b$, then $-a>-b$.
(c) If $a<b$ and a and b are both positive, then $a^{-1}>b^{-1}$.
(d) If $a \leq b$ and $b \leq c$, then $a \leq c$.
(e) If $a \leq b$ and $b<c$, then $a<c$.
(f) If $a<b$ and $b \leq c$, then $a<c$.
(g) If $a<b$ and $c<d$, then $a+c<b+d$.
(h) If $a \leq b$ and $c<d$, then $a+c<b+d$.
(i) If $a \leq b$ and $c \leq d$, then $a+c \leq b+d$.
(j) If $a \leq b$ and $c>0$, then $a c \leq b c$.
(k) If $a \leq b$ and $c<0$, then $a c \geq b c$.
(l) If $a<b$ and $c<d$, and a, b, c, d are nonnegative, then $a c<b d$.
(m) If $a<b$ and $c \leq d$, and a, b, c, d are nonnegative, then $a c<b d$.
(n) If $a \leq b$ and $c \leq d$, and a, b, c, d are nonnegative, then $a c \leq b d$.
(o) $a b>0$ if and only if a and b are both positive or both negative.
(p) $a b<0$ if and only if one is positive and the other is negative.
(q) If $a \leq b$ and $b \leq a$, then $a=b$.
(r) There does not exist a smallest positive real number.
7. Properties of squares
(a) If $a \neq 0$, then $a^{2}>0$.
(b) For any $a, a^{2} \geq 0$.
(c) If a and b are positive, then $a<b \Rightarrow a^{2}<b^{2}$.
(d) If a and b are negative, then $a<b \Rightarrow a^{2}>b^{2}$.
8. Order properties of integers
(a) If n is a positive integer, then $n \geq 1$.
(b) If m and n are integers such that $m>n$, then $m \geq n+1$.
(c) There does not exist a largest integer.
9. Laws of exponents

In statements (a)-(d) below, m and n are assumed to be nonnegative integers.
(a) $a^{n} b^{n}=(a b)^{n}$.
(b) $a^{m+n}=a^{m} a^{n}$.
(c) $\left(a^{m}\right)^{n}=a^{m n}$.
(d) $a^{n} / b^{n}=(a / b)^{n}$ if b is nonzero.
(e) Identities $9(\mathrm{a})-9(\mathrm{~d})$ hold for arbitrary integers m and n, provided a and b are nonzero.
10. DIVISIBILITY PROPERTIES OF INTEGERS

In each of the following statements, m, n, and p are assumed to be integers.
(a) If $m \mid n$ and $n \mid p$, then $m \mid p$.
(b) If $m \mid n$ and $m \mid p$, then $m \mid(n+p)$.
(c) If $m \mid n$ or $m \mid p$, then $m \mid n p$.
(d) If n is even, so is n^{2}.
(e) If n^{2} is odd, so is n.
(f) If m and n are even, so is $m+n$.
(g) If m is even, then so is $m n$ for any integer n.

