Rational and irrational numbers are defined on the last page of our Axioms handout (Handout 4): A real number a is said to be rational if there are integers p and q with $q \neq 0$ such that $a=p / q$, and it is said to be irrational if it is not rational.

The following theorem expresses one of the most important facts about rational numbers. It is the main ingredient in the proof that $\sqrt{2}$ is irrational. (See Theorem 3.20 on pp. 124125 of our textbook. The result of the following theorem is mentioned on page 124, but the book does not give a proof.)

Theorem 1. Suppose x is a rational number. Then x can be expressed in the form $x=p_{1} / q_{1}$, where p_{1} and q_{1} are integers such that $q_{1}>0$ and p_{1} and q_{1} have no common factors greater than 1. Such an expression for x is said to be in lowest terms.

Proof. Let x be an arbitrary rational number. Define a set S of positive integers as follows:

$$
S=\left\{q \in \mathbb{Z}^{+}: x=p / q \text { for some integer } p\right\}
$$

(In other words, S is the set of all positive denominators that can be used to express x as a fraction.) Then S is a set of positive integers by definition; we wish to show that it is nonempty. The hypothesis that x is rational means there are some integers p, q with $q \neq 0$ such that $x=p / q$. If $q>0$, then $q \in S$; while if $q<0$, then $x=(-p) /(-q)$, so $-q \in S$. This shows that $S \neq \emptyset$.

The well-ordering axiom guarantees that S contains a smallest integer; call it q_{1}. The fact that $q_{1} \in S$ means that $q_{1}>0$ and $x=p_{1} / q_{1}$ for some integer p_{1}. To complete the proof, we need to show that p_{1} and q_{1} have no common factors greater than 1 .

Assume for the sake of contradiction that k is a common factor greater than 1 . This means k divides both p_{1} and q_{1}, so $p_{1}=k m$ and $q_{1}=k n$ for some integers m and n. By algebra, this implies

$$
x=\frac{p_{1}}{q_{1}}=\frac{k m}{k n}=\frac{m}{n} .
$$

On the other hand, the fact that $k>1$ means that $n>0$ (for otherwise $q_{1}=k n$ would be negative or zero, which is a contradiction). Thus we have shown that n is a positive integer and $x=m / n$ for some integer m, which is to say that $n \in S$. However, the inequality $k>1$ can be multiplied on both sides by the positive integer n, yielding $k n>n$, from which we conclude that

$$
q_{1}=k n>n,
$$

contradicting the fact that q_{1} is the smallest element of S.

