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In its most basic form, a mathematical proof is just a sequence of mathematical statements, con-
nected to each other by strict rules that describe what types of statements may be added and in
what order. If, by following these rules, you produce a sequence of statements, the last of which is
the statement of the theorem you’re trying to prove, then you have produced a proof that will con-
vince any mathematically educated reader or listener beyond reasonable doubt that your theorem
is correct.

In this note, we focus on the underlying structure of a proof as a sequence of statements, each
justified according to the conventions of mathematical reasoning. To make that structure as plain as
possible, we present our proofs in a “two-column” format, similar to the way proofs are introduced in
some high-school geometry courses. In the left column is the sequence of statements that constitute
the proof; in the right column are the reasons that justify the steps. The proof will be correct
provided that each step is justified by one or more of the following six types of reasons:

• by hypothesis;
• by a definition;
• by an axiom;
• by a previously proved theorem;
• by a previous step in the same proof;
• by the laws of logic.

There are several different types of proofs, each of which is appropriate in certain circumstances.
This note describes the most important types, with a template for each.

Direct Proofs

The most straightforward type of proof is called a direct proof : This is one in which we assume the
hypotheses, and then, using the rules of deduction that we discussed above, derive the conclusion.
It is easiest to set up when applied to a simple implication.

Template 1 (Direct Proof of an Implication).

Theorem. P ⇒ Q.

Proof.

Statement Reason

Assume P . (hypothesis)
. . . (. . . )

Goal: Q. (. . . )

There are a number of variations on direct proofs. One of the most common is proof by contrapos-

itive. Because the contrapositive of an implication is equivalent to the original implication, we can
always prove an implication by proving its contrapositive instead, if that is more convenient. Here
is the template.
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Template 2 (Proof by Contrapositive).

Theorem. P ⇒ Q.

Proof.

Statement Reason

Assume ¬Q. (hypothesis)
. . . (. . . )

Goal: ¬P . (. . . )

Proofs of Universal Statements

The simple implications we have been considering so far are not very realistic; most theorem
statements contain variables and (implicit or explicit) universal quantifiers. Here is the basic
template for proving a universal statement.

Template 3 (Universal Statement).

Theorem. (∀x ∈ D)(Q(x)).

Proof.

Statement Reason

Let x be an arbitrary element of D. (hypothesis)
. . . (. . . )

Goal: Q(x). (. . . )

Pay close attention to the wording of the first step in this template. The word “let” is generally
reserved for a special role in mathematical arguments: it should be used only to introduce a new
symbolic name for something. One situation in which it occurs frequently is when assigning a
specific value to a variable: “let a = 2.” Another such situation is at the beginning of a proof of a
universal statement, as in the template above, to introduce a symbol that represents a universally
quantified variable in the proof. You should avoid using “let” to introduce anything other than a new
symbolic name—for example, it would not be appropriate to use “let” to introduce an assumption,
as in “let AB and AC be equal.” It would be much better to say “assume that AB and AC are
equal,” or “suppose AB and AC are equal.” (Occasionally, mathematicians do carelessly use the
word “let” instead of “assume” or “suppose” in sentences like these, but your proofs will be clearer
if you learn from the start to use “let” only to introduce new symbolic names.)

The other important word in the first step is “arbitrary.” This is reserved for universally quantified
objects, and indicates that the symbol x can stand for any unspecified element of the domain D.
This means that we are not allowed to assume anything special about it except that it is an element
of D (unless the subsequent steps in the proof call for such an assumption, an example of which
we will see in the next template we consider). As long as we remember this restriction, the steps
of our proof will be applicable to any element of D whatsoever, and we will have proved that each
element x ∈ D must satisfy the conclusion Q(x).

Many of the templates we give here can be combined to obtain more complicated proof structures,
for example by embedding one type of proof as a series of steps inside a longer proof of a different
type. An important and common instance of this occurs when the theorem statement is a universal

implication. In this case, the structure of the proof combines the patterns for proving both a
universal statement and an implication. The vast majority of all theorems in mathematics are
stated as universal implications (often with an implicit universal quantifier), so it is important to
become very familiar with the template for such proofs.



Template 4 (Universal Implication).

Theorem. (∀x ∈ D)(P (x) ⇒ Q(x)).

Proof.

Statement Reason

Let x be an arbitrary element of D. (hypothesis)
Assume P (x). (hypothesis)
. . . (. . . )

Goal: Q(x). (. . . )

Of course, a universal implication can also be proved by proving the contrapositive; we leave it to
you to figure out the details of all the possible variations on such combinations. You will see many
of them in action in the proofs you encounter throughout this book.

Proofs of Conjunctions

Another type of theorem you will encounter is one in which you must prove a conjunction. Most
often, the conjunction occurs as the conclusion of an implication, as in “P ⇒ Q1 ∧ Q2.” In this
case, the idea is simple: to prove the conclusion, we must prove that Q1 and Q2 are both true, so
the proof will have two parts, one for each conclusion. Here is what the template looks like.

Template 5 (Proof of a Conjunction).

Theorem. P ⇒ Q1 ∧ Q2.

Proof.

Statement Reason

Assume P . (hypothesis)

Part 1: Proof of Q1

. . . (. . . )

. . . (. . . )
Goal: Q1. (. . . )

Part 2: Proof of Q2

. . . (. . . )

. . . (. . . )
Goal: Q2. (. . . )

The hypothesis P is stated before the beginning of Part 1 to make it clear that it can be used
throughout both parts of the proof.

Proofs of Equivalence

A common type of theorem is an equivalence theorem, one that asserts a biconditional like P ⇔ Q.
Since this statement is equivalent to the conjunction “P ⇒ Q ∧ Q ⇒ P ,” a proof of equivalence
has to be carried out in two parts like a proof of a conjunction.



Template 6 (Proof of Equivalence).

Theorem. P ⇔ Q.

Proof.

Statement Reason

Part 1: Proof that P ⇒ Q

Assume P . (hypothesis)
. . . (. . . )

Goal: Q. (. . . )

Part 2: Proof that Q ⇒ P

Assume Q. (hypothesis)
. . . (. . . )

Goal: P . (. . . )

A common variation on this pattern is to prove one or the other of the implications by proving its
contrapositive. For example, a common way to prove P ⇔ Q is first to prove P ⇒ Q and then to
prove ¬P ⇒ ¬Q.

Proof by Cases

Another important variation on direct proof is proof by cases. This is needed whenever you need
to prove that two or more different hypotheses lead to the same conclusion. The most common
example of this is a theorem whose hypothesis is a disjunction (an “or” statement). For example,
suppose we want to prove a statement of the form “P1 ∨ P2 ⇒ Q.” In this case, the hypothesis
tells us that either P1 or P2 is true, but we don’t know which one; you need to show that either
hypothesis leads to the conclusion that Q is true. For such a theorem, it is necessary to carry out
two proofs, one for the case in which P1 is true, and the other for the case in which P2 is true. The
template looks like this:

Template 7 (Proof by Cases).

Theorem. P1 ∨ P2 ⇒ Q.

Proof.

Statement Reason

Assume P1 ∨ P2. (hypothesis)

Case 1:
Assume P1. (hypothesis)
. . . (. . . )

Goal: Q. (. . . )

Case 2:
Assume P2. (hypothesis)
. . . (. . . )

Goal: Q. (. . . )

Note the difference between cases and parts of a proof: as explained in the preceding section, your
proof will have multiple parts when you have two or more different conclusions to prove, with the
same or different hypotheses. On the other hand, it will have multiple cases when there is only one



conclusion to prove, but it must be proved under two or more different hypotheses. The typical
patterns are summarized in the following diagrams:

P

Q1

Part 1

✛

and Q2

Part 2

✲

P Q

Q

Part 1
❄

P

Part 2
❄

P1 or P2

Q

Case 2

✛

Case 1 ✲

Proofs by cases can be useful even when there is not a disjunction in the hypothesis. If, at any
point during a proof, you have deduced a statement of the form P1 ∨ P2, then it is legitimate to
divide the remainder of the proof into cases depending on whether P1 is true or P2 is true.

In fact, sometimes cases are useful even when no disjunction is evident. If one of two (or more)
possibilities must hold, and different proofs are needed to handle the different possibilities, then a
proof by cases is called for. In effect, we introduce a disjunction of the form R ∨ ¬R (which is
always true by the laws of logic), and then use those two cases to continue the proof. Consider the
following snippet:

Statement Reason

. . . (. . . )
5. a is a real number. (. . . )
6. Either a = 0 or a 6= 0. (logic)

Case 1:
7. Assume a = 0. (hypothesis)

. . . (. . . )

Case 2:
10. Assume a 6= 0. (hypothesis)

. . . (. . . )

In practice, in cases like this, the explicit statement of the disjunction (Step 6 in the preceding
snippet) is frequently omitted from the proof, as long as it will be obvious to the reader that at
least one of the specified cases must hold.

Proof of a Disjunction

If the conclusion of a theorem is a disjunction, as in “P ⇒ Q1 ∨ Q2,” the most common way to
prove the theorem is to use the following logical equivalence, which can be verified using a truth
table:

(

P ⇒ Q1 ∨ Q2

)

≡
(

(P ∧ ¬Q1) ⇒ Q2

)

.

(Or, if it’s easier, you can reverse the roles of Q1 and Q2.) From that point on, it’s just like any
other proof of an implication.

Template 8 (Proof of a Disjunction).

Theorem. P ⇒ Q1 ∨ Q2.

Proof.

Statement Reason

Assume P ∧ ¬Q1. (hypothesis)
. . . (. . . )

Goal: Q2. (. . . )



Proofs by Contradiction

All of the types of proofs we have discussed so far are variants of direct proofs: we assume one or
more hypotheses, and reason directly until we reach the desired conclusion(s). Now we will discuss
a very different type of proof, called a proof by contradiction or an indirect proof. In this type of
proof, we assume that the theorem statement is false and derive a contradiction.

An indirect proof can be used for any type of theorem. Here’s the general template.

Template 9 (Proof by Contradiction).

Theorem. Q.

Proof.

Statement Reason

Assume ¬Q. (hypothesis for contradiction)
. . . (. . . )

Goal: Contradiction. (. . . )
Conclusion: Q.

The “contradiction” can be any statement that is known to be false, but usually it is a statement
of the form R ∧ ¬R, where R is any statement whatsoever.

The most common use of indirect proof is to prove an implication, such as P ⇒ Q. In that case,
the hypothesis for contradiction is the negation of P ⇒ Q, which is P ∧ ¬Q. Thus we get to
assume both that P is true and that Q is false. Since P is what we would normally assume for a
direct proof, only the ¬Q assumption needs to be labeled as a hypothesis for contradiction. The
template looks like this.

Template 10 (Proof of an Implication by Contradiction).

Theorem. P ⇒ Q.

Proof.

Statement Reason

Assume P . (hypothesis)
Assume ¬Q. (hypothesis for contradiction)
. . . (. . . )

Goal: Contradiction. (. . . )
Conclusion: P ⇒ Q. (logic)

Existence Proofs

Many important mathematical theorems are existence statements. A generic existence statement
is one of the form “(∃y ∈ D)(Q(y)).” To prove such a statement, we need only show that there is
one element y in D that satisfies the condition Q(y). We get to choose or construct the element
in any way that is convenient. Once we have chosen it, we then need to prove that it satisfies the
condition Q(y). Thus a proof of existence will typically have two parts: the first part describes
how to construct or choose an appropriate element y ∈ D, and the second part proves that y has
the desired properties.

This kind of proof is often called a constructive proof, because the object y whose existence is being
asserted is sometimes “constructed,” for example by giving a formula for it. Even if y is not really
constructed, but is just chosen from among some already-existing set of objects, this type of proof



is still called a constructive proof as long as it gives a definite formula, rule, or algorithm for how
to choose y. Here is a template.

Template 11 (Constructive Existence Proof).

Theorem. (∃y ∈ D)(Q(y)).

Proof.

Statement Reason

Part 1: Choosing y ∈ D

. . . (. . . )

. . . (. . . )
Let y = . . . . (. . . )

Part 2: Proof of Q(y)
. . . (. . . )
. . . (. . . )

Goal: Q(y). (. . . )

The first part of a constructive existence proof might require a little more ingenuity than other
kinds of proofs, because there are no general guidelines about how to construct or choose an object
that satisfies the desired conditions; you have to look at each particular situation and figure out
how to use the given information to find an object of the right type.

Most often, an existence statement occurs as the conclusion of a different type of statement, such
as a universal statement. Templates for such proofs are simply combinations of the template for
an existence proof with the appropriate template for the enclosing statement. Here is a template
for one of the most common types of existence theorems.

Template 12 (Universal Existence Proof).

Theorem. (∀x ∈ E)(∃y ∈ D)(Q(x, y)).

Proof.

Statement Reason

Let x be an arbitrary element of E. (hypothesis)
Part 1: Choosing y ∈ D

. . . (. . . )

. . . (. . . )
Let y = . . . . (. . . )

Part 2: Proof of Q(y)
. . . (. . . )
. . . (. . . )

Goal: Q(y). (. . . )

The important feature of this template is that, due to the order in which the quantifiers appear,
the universally quantified variable x is introduced first, and then you get to choose or construct y
in a way that might depend on x; typically, different choices of x will result in different choices of
y. For example, to prove the statement (∀x ∈ R)(∃y ∈ R)(y > x), we would start by letting x be
an arbitrary real number, and then defining y by some formula involving x, such as y = x+ 1.



Nonexistence Proofs

Closely related to existence proofs are proofs of nonexistence statements. For example, to show
that the square root of 2 is irrational, we have to prove that there do not exist integers p and q such
that (p/q)2 = 2. Of course, a negated existence statement is equivalent to a universal statement:
“For all integers p and q, (p/q)2 6= 2,” so we could attempt to prove this universal statement. But
it is almost always easier to prove nonexistence indirectly, by assuming that an object exists with
the given properties and deriving a contradiction. Here is a template for the simplest case.

Template 13 (Nonexistence Proof).

Theorem. ¬(∃y ∈ D)(Q(y)).

Proof.

Statement Reason

Assume (∃y ∈ D)(Q(y)). (hypothesis for contradiction)
. . . (. . . )

Goal: Contradiction. (. . . )

Uniqueness Proofs

We need one more kind of proof template: uniqueness proofs. You have seen uniqueness statements
before; one example is Theorem 2 on our axioms list: The numbers 0 and 1 in the identity axiom

are unique. The statement that 0 is unique means that if someone manages to come up with two
numbers, say 0 and 0′, that satisfy the conclusion of the identity axiom (“0 + a = a + 0 for every
real number a and 0′ + a = a+ 0′ for every real number a”), then it must be the case that 0 = 0′.

A uniqueness statement always says that an object is the unique one satisfying a certain property.
A statement like “the object x ∈ D satisfying P (x) is unique” is really a short way of saying “if x1
and x2 are elements of D that satisfy P (x1) and P (x2), then they are equal.” (Note the implicit
universal quantifier in this statement.) Symbolically, this can be written

∀x1, x2 ∈ D,P (x1) ∧ P (x2) ⇒ x1 = x2. (1)

It is important to understand the distinction between the mathematical terms “unique” and “dis-
tinct”: to say that an object is the unique one satisfying a certain condition is to say that any
two objects satisfying the same condition must be equal to each other; while to say that two or
more objects are distinct is to say that they are not equal to each other. Mathematically, these
terms are not interchangeable, even though in nonmathematical contexts, they are sometimes used
interchangeably. For example, in computer science, one speaks of the number of “unique visitors”
to a website during a certain period of time, meaning the number of different people who logged
on to the site. A mathematician would prefer to call these “distinct visitors.”

The symbolic statement (1) points the way to proving uniqueness statements. Here’s a template.

Template 14 (Uniqueness Proof).

Theorem. ∀x1, x2 ∈ D,P (x1) ∧ P (x2) ⇒ x1 = x2.

Proof.

Statement Reason

Let x1, x2 ∈ D. (hypothesis)
Assume P (x1) and P (x2) are true. (hypothesis)
. . . (. . . )

Goal: x1 = x2 (. . . )



Uniqueness statements often come paired with existence statements, as in Theorem 95 on our
axioms handout: “If a is any nonnegative real number, there is a unique nonnegative real number√
a, called the square root of a, such that

(√
a
)

2 = a.” In other words, for every nonnegative real
number a, there exists a nonnegative number whose square is a, and it is the unique nonnegative
number whose square is a. To prove this, you would start by letting a represent an arbitrary
nonnegative real number, and first prove existence and then prove uniqueness.

An existence and uniqueness statement is often symbolized by adding an exclamation point after
the symbol for “there exists”; thus “there exists a unique x in D such that P (x)” can be symbolized
as

∃!x ∈ D,P (x). (2)

As always, the domain of the quantifier must be either specified or understood from the context.
“Existence and uniqueness” is not really a new kind of quantifier; rather, it is just a shorthand for
the conjunction of two separate statements, one asserting existence (“there exists at least one such
x”) and the other asserting uniqueness (“there exists at most one such x”).


