
AXIOMS FOR THE REAL NUMBERS AND THE INTEGERS

PRIMITIVE TERMS

To avoid circularity, we cannot give every term a rigorous mathematical definition; we have to accept some
things as undefined terms. For this course, we will take the following fundamental notions as primitive
undefined terms. You already know what these terms mean; but the only facts about them that can be used
in proofs are the ones expressed in the axioms listed below (and any theorems that can be proved from the
axioms).

• Real number: Intuitively, a real number represents a point on the number line, or a (signed) distance
left or right from the origin, or any quantity that has a finite or infinite decimal representation. Real
numbers include integers, positive and negative fractions, and irrational numbers like

√
2, π, and e.

• Integer: An integer is a whole number (positive, negative, or zero).

• Zero: The number zero is denoted by 0.

• One: The number one is denoted by 1.

• Addition: The result of adding two real numbers a and b is denoted by a+ b, and is called the sum
of a and b.

• Multiplication: The result of multiplying two real numbers a and b is denoted by ab or a ·b or a×b,
and is called the product of a and b.

• Less than: To say that a is less than b, denoted by a < b, means intuitively that a is to the left of b
on the number line.

DEFINITIONS

In all the definitions below, a and b represent arbitrary real numbers.

• The numbers 2 through 10 are defined by 2 = 1 + 1, 3 = 2 + 1, etc. The decimal representations for
other numbers are defined by the usual rules of decimal notation: For example, 23 is defined to be
2 · 10 + 3, etc.

• The additive inverse or negative of a is the number −a that satisfies a + (−a) = 0, and whose
existence and uniqueness are guaranteed by Axiom 9.

• The difference between a and b, denoted by a− b, is the real number defined by a− b = a+ (−b),
and is said to be obtained by subtracting b from a.

• If a �= 0, the multiplicative inverse or reciprocal of a is the number a−1 that satisfies a× a−1 = 1,
and whose existence and uniqueness are guaranteed by Axiom 10.

• If b �= 0, the quotient of a and b, denoted by a/b, is the real number defined by a/b = ab−1, and is
said to be obtained by dividing a by b.

• A real number is said to be rational if it is equal to p/q for some integers p and q with q �= 0.

• A real number is said to be irrational if it is not rational.

• The statement a is less than or equal to b, denoted by a ≤ b, means a < b or a = b.

• The statement a is greater than b, denoted by a > b, means b < a.

• The statement a is greater than or equal to b, denoted by a ≥ b, means a > b or a = b.

• A real number a is said to be positive if a > 0. The set of all positive real numbers is denoted by R
+,

and the set of all positive integers by Z
+.

• A real number a is said to be negative if a < 0.
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• A real number a is said to be nonnegative if a ≥ 0.

• A real number a is said to be nonpositive if a ≤ 0.

• If a and b are two distinct real numbers, a real number c is said to be between a and b if either
a < c < b or a > c > b.

• The square of a real number a is the real number a · a, denoted by a2.

• If S is a set of real numbers, a real number b is said to be the largest element of S if b is an element
of S and, in addition, b ≥ x whenever x is any element of S. The term smallest element is defined
similarly.

• If S is a set of real numbers, a real number b (not necessarily in S) is said to be an upper bound for
S if b ≥ x for every x in S. It is said to be a least upper bound for S if every other upper bound b′

for S satisfies b′ ≥ b. The terms lower bound and greatest lower bound are defined similarly.

PROPERTIES OF EQUALITY

In modern mathematics, the relation “equals” can be used between any two “mathematical objects” of
the same type, such as numbers, matrices, sets, functions, etc. To say that a = b is simply to say that
the symbols a and b represent the very same object. Thus equality really belongs to logic rather than
to any particular branch of mathematics. Equality always has the following fundamental properties, no
matter what kinds of objects it is applied to. In the following statements, a, b, and c can represent any
mathematical objects whatsoever. (In the rest of this handout, they will always be real numbers.)

General Properties of Equality

1. (Reflexivity) a = a.
2. (Symmetry) If a = b, then b = a.
3. (Transitivity) If a = b and b = c, then a = c.
4. (Substitution) If a = b, then b may be substituted for some or all occurrences of a as a free variable

in any mathematical statement without changing that statement’s truth value.

In addition, for real numbers, we have the following properties. The first five statements say roughly that if
you start with a true equation between two real numbers, you can “do the same thing to both sides” and
still have a true equation. The last two say that if you start with two true equations, you will still have a
true equation after adding them together, multiplying them together, subtracting one from the other, or
dividing one by the other (provided you are not dividing by zero). All of these statements can be proved
using only reflexivity of equality and substitution. In these statements, a, b, c, d represent arbitrary real
numbers.

Properties of Equality of Real Numbers

1. If a = b, then a+ c = b+ c, ac = bc, and a− c = b− c.
2. If a = b and c is nonzero, then a/c = b/c.
3. If a = b, then −a = −b.
4. If a = b and a and b are both nonzero, then a−1 = b−1.
5. If a = b, then a2 = b2.
6. If a = b and c = d, then a+ c = b+ d, ac = bd, and a− c = b− d.
7. If a = b and c = d, and c and d are both nonzero, then a/c = b/d.
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AXIOMS

We assume that the following statements are true. Here a, b, c represent arbitrary real numbers.

1. (Existence) There exists a set R consisting of all real numbers. It contains a subset Z ⊆ R consisting
of all integers.

2. (Closure of Z) If a and b are integers, then so are a+ b and ab.
3. (Closure of R) If a and b are real numbers, then so are a+ b and ab.
4. (Commutativity) a+ b = b+ a and ab = ba for all real numbers a and b.
5. (Associativity) (a+ b) + c = a+ (b+ c) and (ab)c = a(bc) for all real numbers a, b, and c.
6. (Distributivity) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all real numbers a, b, and c.
7. (Zero) 0 is an integer that satisfies a+ 0 = a = 0 + a for every real number a.
8. (One) 1 is an integer that is not equal to zero and satisfies a× 1 = a = 1× a for every real number a.
9. (Additive inverses) If a is any real number, there is a unique real number −a such that a+(−a) = 0.

If a is an integer, then so is −a.
10. (Multiplicative inverses) If a is any nonzero real number, there is a unique real number a−1 such

that a× a−1 = 1.
11. (Trichotomy law) If a and b are real numbers, then one and only one of the following three state-

ments is true: a < b, a = b, or a > b.
12. (Closure of R

+
) If a and b are positive real numbers, then so are a+ b and ab.

13. (Addition law for inequalities) If a, b, and c are real numbers and a < b, then a+ c < b+ c.
14. (The well ordering axiom) Every nonempty set of positive integers contains a smallest element.
15. (The least upper bound axiom) If S is any nonempty set of real numbers and S has an upper

bound, then S has a least upper bound.

SELECTED THEOREMS

These theorems can be proved from the axioms in the order listed below. In all of these statements, a, b, c, d
represent arbitrary real numbers.

1. Properties of zero

(a) a− a = 0.
(b) 0− a = −a.
(c) 0 · a = 0.
(d) If ab = 0, then a = 0 or b = 0.

2. Properties of signs

(a) −0 = 0.
(b) −(−a) = a.
(c) (−a)b = −(ab) = a(−b).
(d) (−a)(−b) = ab.
(e) −a = (−1)a.

3. More distributive properties

(a) −(a+ b) = (−a) + (−b) = −a− b.
(b) −(a− b) = b− a.
(c) −(−a− b) = a+ b.
(d) a+ a = 2a.
(e) a(b− c) = ab− ac = (b− c)a.
(f) (a+ b)(c+ d) = ac+ ad+ bc+ bd.
(g) (a+ b)(c− d) = ac− ad+ bc− bd = (c− d)(a+ b).
(h) (a− b)(c− d) = ac− ad− bc+ bd.

4. Properties of inverses

(a) If a is nonzero, then so is a−1.
(b) 1−1 = 1.
(c) (a−1)−1 = a if a is nonzero.
(d) (−a)−1 = −(a−1) if a is nonzero.
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(e) (ab)−1 = a−1b−1 if a and b are nonzero.
(f) (a/b)−1 = b/a if a and b are nonzero.

5. Properties of quotients

(a) a/1 = a.
(b) 1/a = a−1 if a is nonzero.
(c) a/a = 1 if a is nonzero.
(d) (a/b)(c/d) = (ac)/(bd) if b and d are nonzero.
(e) (a/b)/(c/d) = (ad)/(bc) if b, c, and d are nonzero.
(f) (ac)/(bc) = a/b if b and c are nonzero.
(g) a(b/c) = (ab)/c if c is nonzero.
(h) (ab)/b = a if b is nonzero.
(i) (−a)/b = −(a/b) = a/(−b) if b is nonzero.
(j) (−a)/(−b) = a/b if b is nonzero.
(k) a/b+ c/d = (ad+ bc)/(bd) if b and d are nonzero.
(l) a/b− c/d = (ad− bc)/(bd) if b and d are nonzero.

6. Properties of squares

(a) For every a, a2 ≥ 0.
(b) a2 = 0 if and only if a = 0.
(c) a2 > 0 if and only if a > 0.
(d) (−a)2 = a2.
(e) (a−1)2 = 1/a2.
(f) If a2 = b2, then a = b or a = −b.
(g) If a and b are positive, then a < b =⇒ a2 < b2.
(h) If a and b are negative, then a < b =⇒ a2 > b2.

7. Transitivity of inequalities

(a) If a < b and b < c, then a < c.
(b) If a ≤ b and b < c, then a < c.
(c) If a < b and b ≤ c, then a < c.
(d) If a ≤ b and b ≤ c, then a ≤ c.

8. Other Properties of inequalities

(a) If a ≤ b and b ≤ a, then a = b.
(b) If a < b, then −a > −b.
(c) 0 < 1.
(d) If a > 0, then a−1 > 0.
(e) If a < 0, then a−1 < 0.
(f) If a < b and a and b are both positive, then a−1 > b−1.
(g) If a < b and c < d, then a+ c < b+ d.
(h) If a ≤ b and c < d, then a+ c < b+ d.
(i) If a ≤ b and c ≤ d, then a+ c ≤ b+ d.
(j) If a < b and c > 0, then ac < bc.
(k) If a < b and c < 0, then ac > bc.
(l) If a ≤ b and c > 0, then ac ≤ bc.

(m) If a ≤ b and c < 0, then ac ≥ bc.
(n) If a < b and c < d, and a, b, c, d are nonnegative, then ac < bd.
(o) If a ≤ b and c ≤ d, and a, b, c, d are nonnegative, then ac ≤ bd.
(p) ab > 0 if and only if a and b are both positive or both negative.
(q) ab < 0 if and only if one is positive and the other is negative.
(r) There does not exist a smallest positive real number.
(s) (Density) If a and b are two distinct real numbers, then there exist infinitely many rational

numbers and infinitely many irrational numbers between a and b.

9. Order properties of integers

(a) 1 is the smallest positive integer.
(b) If m and n are integers such that m > n, then m ≥ n+ 1.
(c) There does not exist a largest or smallest integer.
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