Part III:

- 3. In addition to the two-column proofs you were asked to do in Part I of this assignment, write paragraph-style proofs of the following two theorems, making sure to follow the guidelines in the handout *Conventions for Writing Mathematical Proofs*.
 - Theorem 7(c).
 - Theorem 9(b).

As a sample, here's my two-column proof of one of the theorems I proved in class today, together with a paragraph-style version of the same proof. Of course, this is just one way to write it up; there are many, many others.

Theorem. If a < b and $ac \leq bc$, then $c \leq 0$.

Statement	Reason
1. Let $a, b, c \in \mathbb{R}$	hypothesis
2. Assume $a < b$ and $ac \leq bc$	hypothesis
3. Assume $c > 0$	for contradiction
4. $a < b$	Step 2, logic
5. $ac > bc$	multiplying step 4 by c , Axiom 13
6. $ac \neq bc$	trichotomy, Step 2
7. Contradiction	Steps 5 and 6

Theorem. If a < b and $ac \leq bc$, then $c \leq 0$.

Proof. We will prove this theorem by contradiction. Thus suppose a, b, and c are real numbers such that a < b and $ac \leq bc$, and assume for the sake of contradiction that c > 0. When we multiply both sides of the inequality a < b by the negative number c, the multiplicative law for inequalities yields

ac > bc.

But this contradicts our assumption that $ac \leq bc$. Thus the assumption must have been false, and we must have $c \geq 0$ as claimed.