Part III:

3. In addition to the two-column proofs you were asked to do in Part I of this assignment, write paragraph-style proofs of the following two theorems, making sure to follow the guidelines in the handout Conventions for Writing Mathematical Proofs.

- Theorem 7(c).
- Theorem 9(b).

As a sample, here's my two-column proof of one of the theorems I proved in class today, together with a paragraph-style version of the same proof. Of course, this is just one way to write it up; there are many, many others.

Theorem. If $a<b$ and $a c \leq b c$, then $c \leq 0$.

Statement	Reason
1. Let $a, b, c \in \mathbb{R}$	hypothesis
2. Assume $a<b$ and $a c \leq b c$	hypothesis
3. Assume $c>0$	for contradiction
4. $a<b$	Step 2, logic
5. $a c>b c$	multiplying step 4 by c, Axiom 13
6. $a c \ngtr b c$	trichotomy, Step 2
7. Contradiction	Steps 5 and 6

Theorem. If $a<b$ and $a c \leq b c$, then $c \leq 0$.
Proof. We will prove this theorem by contradiction. Thus suppose a, b, and c are real numbers such that $a<b$ and $a c \leq b c$, and assume for the sake of contradiction that $c>0$. When we multiply both sides of the inequality $a<b$ by the negative number c, the multiplicative law for inequalities yields

$$
a c>b c
$$

But this contradicts our assumption that $a c \leq b c$. Thus the assumption must have been false, and we must have $c \geq 0$ as claimed.

