Part I:

- 1. For each of the following statements, do the following things:
 - Translate it into symbols. (Be sure that your symbolic statement explicitly includes implied universals and domains of quantifiers.)
 - Negate the symbolic statement and simplify. (In particular, this means to remove parentheses in expressions of the form $\sim(...)$.)
 - Translate the negated statement back into a clear and precise English sentence, without using the word "no" or "not."
 - (a) For every real number x, there is an integer that is greater than x.
 - (b) There is an integer that is greater than every real number.
 - (c) There is a largest integer.
 - (d) There exist integers p and q such that q > 0 and $p^2/q^2 = 2$.
 - (e) Between any integer and any larger integer, there is a real number.
 - (f) There is an integer that is not the square of any integer.
 - (g) Every real number has a unique cube root.
 - (h) For every $\varepsilon \in \mathbb{R}^+$, there is a positive real number δ such that $|x-2| < \delta$ implies $|x^2-4| < \varepsilon$ whenever $x \in \mathbb{R}$.
- 2. Find predicates P(x) and Q(x) such that one of the following statements is true and the other is false:

$$\exists x \in \mathbb{R}, P(x) \land Q(x)$$
 and $(\exists x \in \mathbb{R}, P(x)) \land (\exists x \in \mathbb{R}, Q(x)).$