Math 300A&BIntroduction to Mathematical ReasoningFall 2009Assignment #1: Due Wednesday, 10/7/09

- 1. Eccles, p. 9, problems 1.2, 1.3.
- 2. A statement form is a sentence in which variables are used to represent propositions, such that it becomes a proposition when actual propositions are substituted for the variables. For example, if P and Q represent propositions, then $P \wedge Q$ is a statement form. The truth value of a statement form depends on the truth values of the individual statement variables, and can be determined by a truth table. For example, the usual truth table for "and" determines the truth value of $P \wedge Q$.

Two statement forms are said to be *equivalent* if they give the same truth value for all possible truth values of the statement variables that appear in them. For example, the following truth tables show that the statement forms $P \wedge Q$ and $Q \wedge P$ are equivalent:

P	Q	$P \wedge Q$	$Q \wedge P$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

Because the entries in the last two columns are identical, the two statement forms $P \wedge Q$ and $Q \wedge P$ are equivalent.

For each of the following pairs of statement forms, write out the truth tables and determine whether they are equivalent or not.

- (a) $P \wedge (Q \wedge R)$ and $(P \wedge Q) \wedge R$.
- (b) $P \land (Q \lor R)$ and $(P \land Q) \lor R$.
- (c) $P \lor (Q \land R)$ and $(P \lor Q) \land R$.
- (d) $P \land (Q \lor R)$ and $(P \land Q) \lor (P \land R)$.
- (e) $P \lor (Q \land R)$ and $(P \lor Q) \land (P \lor R)$.
- (f) $\sim (P \land Q)$ and $(\sim P) \lor (\sim Q)$.
- (g) $\sim (P \lor Q)$ and $(\sim P) \land (\sim Q)$.
- 3. If P represents "George washed his hands" and Q represents "George got swine flu," write natural-sounding English sentences for each of the following statement forms:
 - (a) $P \wedge Q$.
 - (b) $P \wedge (\sim Q)$.
 - (c) $(\sim P) \land Q$.

- (d) $(\sim P) \land (\sim Q)$.
- (e) $P \lor Q$.
- (f) $P \lor (\sim Q)$.
- (g) $(\sim P) \lor Q$.
- (h) $(\sim P) \lor (\sim Q)$.

4. Consider the following predicates, in which n represents an unknown positive integer:

- (a) n is either prime or odd.
- (b) n is an odd prime.
- (c) n is prime, but it is not odd.
- (d) n is either prime and odd, or composite and even.

For each sentence, do the following:

- (i) Translate it into a symbolic statement.
- (ii) Write its negation in symbolic form, and simplify far enough that you don't have to use the symbol \sim for "not."
- (iii) Translate the negation back into an English statement.

For your symbolic statements, use only the following symbols:

 $\land, \lor, \sim, =$ parentheses $P(n) \quad (``n \text{ is prime"})$ $C(n) \quad (``n \text{ is composite"})$ $E(n) \quad (``n \text{ is even"})$ $O(n) \quad (``n \text{ is odd"}).$

(Hint: look at parts (f) and (g) of Problem 2 above. Note that O(n) means the same as $\sim E(n)$, and C(n) means the same as $\sim P(n)$.)

Example: n is both even and prime.

Answer:

- (a) Symbolic: $E(n) \wedge P(n)$.
- (b) Symbolic negation: $O(n) \vee C(n)$.
- (c) English negation: Either n is odd or it is composite.