1. Eccles, p. 9, problems 1.2, 1.3.
2. A statement form is a sentence in which variables are used to represent propositions, such that it becomes a proposition when actual propositions are substituted for the variables. For example, if P and Q represent propositions, then $P \wedge Q$ is a statement form. The truth value of a statement form depends on the truth values of the individual statement variables, and can be determined by a truth table. For example, the usual truth table for "and" determines the truth value of $P \wedge Q$.
Two statement forms are said to be equivalent if they give the same truth value for all possible truth values of the statement variables that appear in them. For example, the following truth tables show that the statement forms $P \wedge Q$ and $Q \wedge P$ are equivalent:

P	Q	$P \wedge Q$	$Q \wedge P$
T	T	T	T
T	F	F	F
F	T	F	F
F	F	F	F

Because the entries in the last two columns are identical, the two statement forms $P \wedge Q$ and $Q \wedge P$ are equivalent.
For each of the following pairs of statement forms, write out the truth tables and determine whether they are equivalent or not.
(a) $P \wedge(Q \wedge R)$ and $(P \wedge Q) \wedge R$.
(b) $P \wedge(Q \vee R)$ and $(P \wedge Q) \vee R$.
(c) $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge R$.
(d) $P \wedge(Q \vee R)$ and $(P \wedge Q) \vee(P \wedge R)$.
(e) $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge(P \vee R)$.
(f) $\sim(P \wedge Q)$ and $(\sim P) \vee(\sim Q)$.
$(\mathrm{g}) \sim(P \vee Q)$ and $(\sim P) \wedge(\sim Q)$.
3. If P represents "George washed his hands" and Q represents "George got swine flu," write natural-sounding English sentences for each of the following statement forms:
(a) $P \wedge Q$.
(b) $P \wedge(\sim Q)$.
(c) $(\sim P) \wedge Q$.
(d) $(\sim P) \wedge(\sim Q)$.
(e) $P \vee Q$.
(f) $P \vee(\sim Q)$.
(g) $(\sim P) \vee Q$.
(h) $(\sim P) \vee(\sim Q)$.
4. Consider the following predicates, in which n represents an unknown positive integer:
(a) n is either prime or odd.
(b) n is an odd prime.
(c) n is prime, but it is not odd.
(d) n is either prime and odd, or composite and even.

For each sentence, do the following:
(i) Translate it into a symbolic statement.
(ii) Write its negation in symbolic form, and simplify far enough that you don't have to use the symbol \sim for "not."
(iii) Translate the negation back into an English statement.

For your symbolic statements, use only the following symbols:

$$
\begin{aligned}
& \wedge, \vee, \sim,= \\
& \text { parentheses } \\
& P(n) \quad(\text { " } n \text { is prime" }) \\
& C(n) \quad(\text { " } n \text { is composite" }) \\
& E(n) \quad(\text { " } n \text { is even" }) \\
& O(n) \quad(" n \text { is odd" }) .
\end{aligned}
$$

(Hint: look at parts (f) and (g) of Problem 2 above. Note that $O(n)$ means the same as $\sim E(n)$, and $C(n)$ means the same as $\sim P(n)$.)
Example: n is both even and prime.
Answer:
(a) Symbolic: $E(n) \wedge P(n)$.
(b) Symbolic negation: $O(n) \vee C(n)$.
(c) English negation: Either n is odd or it is composite.

