Handout 1: L'Hôpital's Rule, the ∞ / ∞ case

Theorem 1. Suppose f and g are continuous on $[a, b]$ and differentiable on $(a, b), g^{\prime}(x)$ is never zero for $x \in(a, b)$, and $f(x) \rightarrow+\infty$ and $g(x) \rightarrow+\infty$ as $x \rightarrow a^{+}$. If

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow L \text { as } x \rightarrow a^{+}
$$

then

$$
\frac{f(x)}{g(x)} \rightarrow L \text { as } x \rightarrow a^{+}
$$

Proof. Let $\varepsilon>0$ be given. Because $f^{\prime}(x) / g^{\prime}(x) \rightarrow L$, there exists some $\delta_{1}>0$ such that if $a<x<a+\delta_{1}$, then

$$
\begin{equation*}
\left|\frac{f^{\prime}(x)}{g^{\prime}(x)}-L\right|<\frac{\varepsilon}{4} \tag{1}
\end{equation*}
$$

For simplicity, set $c=a+\delta_{1}$.
Since both $f(x) \rightarrow+\infty$ and $g(x) \rightarrow+\infty$ as $x \rightarrow a^{+}$, we can choose $\delta_{2}>0$ such that $f(x)>\max (f(c), 0)$ and $g(x)>\max (g(c), 0)$ whenever $a<x<a+\delta_{2}$. For any such x, note that

$$
\begin{equation*}
\frac{f(x)}{g(x)}=\left(\frac{f(c)-f(x)}{g(c)-g(x)}\right)\left(\frac{f(x)}{f(c)-f(x)} \cdot \frac{g(c)-g(x)}{g(x)}\right) . \tag{2}
\end{equation*}
$$

Let's denote the expression inside the second set of parentheses as $H(x)$. A little algebraic manipulation shows that

$$
H(x)=\frac{\left(\frac{g(c)}{g(x)}-1\right)}{\left(\frac{f(c)}{f(x)}-1\right)}
$$

Because $g(c) / g(x) \rightarrow 0$ and $f(c) / f(x) \rightarrow 0$, it follows that $H(x) \rightarrow 1$ as $x \rightarrow a^{+}$. Therefore, we can choose $\delta_{3}>0$ such that if $a<x<a+\delta_{3}$, then

$$
|H(x)-1|<\min \left(\frac{\varepsilon}{2|L|+1}, 1\right)
$$

In particular, this implies

$$
\begin{equation*}
|H(x)|=|H(x)-1+1| \leq|H(x)-1|+|1|<1+1=2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
|L||H(x)-1| \leq|L| \frac{\varepsilon}{2|L|+1} \leq \frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

Let $\delta=\min \left(\delta_{1}, \delta_{2}, \delta_{3}\right)$, and suppose x is any number such that $a<x<\delta$. We can apply the Cauchy mean-value theorem (Theorem 11.5.2 in the textbook) on the interval $[x, c]$, showing that there is some $r \in(x, c)$ such that

$$
\frac{f^{\prime}(r)}{g^{\prime}(r)}=\frac{f(c)-f(x)}{g(c)-g(x)}
$$

Since this r satisfies $a<x<r<c=a+\delta_{1}$, (1) implies that

$$
\left|\frac{f^{\prime}(r)}{g^{\prime}(r)}-L\right|<\frac{\varepsilon}{4}
$$

Therefore, using (2), (3), and (4), we obtain

$$
\begin{aligned}
\left|\frac{f(x)}{g(x)}-L\right| & =\left|\left(\frac{f(c)-f(x)}{g(c)-g(x)}\right) H(x)-L\right| \\
& =\left|\frac{f^{\prime}(r)}{g^{\prime}(r)} H(x)-L\right| \\
& =\left|\frac{f^{\prime}(r)}{g^{\prime}(r)} H(x)-L H(x)+L H(x)-L\right| \\
& \leq\left|\frac{f^{\prime}(r)}{g^{\prime}(r)} H(x)-L H(x)\right|+|L H(x)-L| \\
& \left.=|H(x)| \frac{f^{\prime}(r)}{g^{\prime}(r)}-L|+|L|| H(x)-1 \right\rvert\, \\
& \leq 2\left|\frac{f^{\prime}(r)}{g^{\prime}(r)}-L\right|+|L||H(x)-1| \\
& \leq 2 \frac{\varepsilon}{4}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

This completes the proof.
There are other versions of the theorem: The limit L can be $\pm \infty$, or the approach can be any one of the following instead of $x \rightarrow a^{+}$:

$$
x \rightarrow a^{-}, \quad x \rightarrow a, \quad x \rightarrow+\infty, \quad x \rightarrow-\infty .
$$

These variations can be handled by minor modifications to the proof, just as in the $0 / 0$ case in the textbook.

