- Page 6, near the middle: The definition of $[a, b)$ should be

$$
[a, b)=\{x: a \leq x<b\}
$$

- Page 8, Example, first line: 2^{1} should be equal to 2 , not 1 .
- Page 46, Problem 13: The definition of g should be $g(x)=\sqrt{x}-2 / \sqrt{x}$.
- Page 51, Exercises 1.8, Problem 9: This is false for $n=1$, so either n needs to be restricted to $n \geq 2$, or the inequality should be changed to " $\geq \sqrt{n}$."
- Page 60, Figure 2.1.14: The graph should show an open circle at $(0,1)$, because $f(0)$ is not defined.
- Page 74, Theorem 2.3.2: The statement of part (iii) should read as follows:
(iii) $\lim _{x \rightarrow c}[\alpha f(x)]=\alpha L, \quad \alpha$ a real number.
- Page 83, just below Figure 2.4.3: The definition of the Dirichlet function should be

$$
f(x)= \begin{cases}1, & x \text { rational } \\ 0, & x \text { irrational }\end{cases}
$$

- Page 96, multiline display: On the second line, $\tan ^{2} x-1$ in the denominator should be $\tan ^{2} x$.
- Page 105, Figure 3.1.1: The caption on the right-hand side should be $h<0$, not $h>0$.
- Page 117,5 th line of the proof: In the second set of brackets, change $f(x-h)$ to $f(x+h)$.
- Page 129, problem 61: The problem should say that n is a positive integer.
- Page 141, 4th displayed equation: The arrow should point to the second equal sign, not the first.
- Page 146, problem 67: Change "Exercise 62" to "Exercise 59."
- Page 243, last line: Instead of $\frac{137}{16} \cong 8.5625$, it should say $\frac{137}{16}=8.5625$.
- Page 252, Problems 14 and 15: L_{f} and U_{f} are printed in the wrong font: They should be ordinary italics, not script letters.
- Page 281, proof of (5.8.3), first line: Change " $f(x)-f(x)$ " to " $g(x)-f(x)$."
- Page 410, Exercise 78(b): There's a sign error in the last term of the formula. It should be

$$
f(b)-f(a)=f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2}(b-a)^{2}+\int_{a}^{b} \frac{f^{\prime \prime \prime}(x)}{2}(x-b)^{2} d x
$$

- Page 469, line above the last displayed equation: Change $(c, 0)$ to $(0, c)$, and $x=-c$ to $y=-c$.
- Page 476, exercise 29: Add the stipulation that $a \neq 0$. (Otherwise, it's not a quadratic function.)
- Page 501, exercise 24(d): It should say "from $(3,0)$ to $(-3,0)$."
- Page 514, formula (10.7.6): The formula should have $d s / d t$ in place of the first $d x / d t$:

$$
\nu=\frac{d s}{d t}=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}
$$

- Page 516, Problem 38: should read "from time $t=0$ to time $t=2 \pi$ " (not $t=2 t$).
- Page 530, Example 1(a): The condition on s should read

$$
1-0.0001<s \leq 1
$$

- Page 613, Exercise 66: The formula for s_{q} should be

$$
s_{q}=\sum_{k=0}^{q} \frac{1}{k!} .
$$

- Page 696, last displayed equation: The denominator in the center fraction should be h, not \mathbf{h}.
- Page 713, Exercise 17: There are two typos in the formulas for \mathbf{r}_{1} and \mathbf{r}_{2}. They should be

$$
\begin{aligned}
\mathbf{r}_{1}(t) & =e^{t} \mathbf{i}+2 \sin \left(t+\frac{1}{2} \pi\right) \mathbf{j}+\left(t^{2}-2\right) \mathbf{k} \\
\mathbf{r}_{2}(u) & =u \mathbf{i}+2 \mathbf{j}+\left(u^{2}-3\right) \mathbf{k}
\end{aligned}
$$

(The e^{\prime} should be e^{t} in \mathbf{r}_{1}, and the equal sign should be + in \mathbf{r}_{2}.)

- Page 721, Exercise 23: The second \mathbf{i} should be j.
- Page 784, Exercise 23(b):: The last equation should be $\partial f / \partial y=x y$.
- Page 835, Exercise 32(b): Change the first "maximum" to "minimum": " f has a local minimum at $(1,0)$ and at $(-1,0) \ldots$."
- Page 840, Exercise 13: The domain should be given by $-2 \leq x \leq 2, x \leq y \leq 1$.
- Page 840, Exercise 16: The formula for the ellipse should be $\frac{1}{4} x^{2}+y^{2}=1$. (In some printings, it's erroneously printed as $\frac{1}{4} x^{2}+y=1$.)
- Page 866, proof of (17.1.5), first line: There should be an equal sign after C :

$$
B=\sum_{i=1}^{m} b_{i}, \quad C=\sum_{j=1}^{n} c_{j} .
$$

- Page 879 , equation (17.3.2): On the right-hand side, the inner integral should be with respect to x, not y :

$$
\iint_{\Omega} f(x, y) d x d y=\int_{c}^{d}\left(\int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) d x\right) d y
$$

- Page A-16, solution to Exercise 41: range $(f)=\{-1,1\}$.
- Page A-24, solution to Section 3.6 Exercise 67(b): There's a sign mistake in the last term. But more importantly, this argument is misleading, because you cannot conclude that the limit of a difference is the difference of the limits unless you know that both limits exist. Instead, this should be read as an argument by contradiction: assuming that $g^{\prime}(x)$ is continuous, it then follows from this computation that $\cos (1 / x)$ has a limit as $x \rightarrow 0$, which is false.
- Page A-65, solution to Section 12.9 Exercise 41: The answer should be $e^{x^{3}}$.
- Page A-70, solution to Section 14.5 Exercise 33: The answer should be $\frac{1}{2} \sqrt{2} e^{-t}$. (In some printings, an erroneous answer is given.)

