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Handout 3: The Complex Numbers1 (Revised 2/28/2017)

1. The Complex Plane

The intuitive idea of the complex numbers is that we enlarge the set of real numbers by introducing a
new number i that satisfies i2 = −1, and then consider all numbers of the form x + iy, where x and y are
real. The rules for addition and multiplication should be more or less what you would expect, assuming that
i follows the usual rules of algebra:

(x+ iy) + (u+ iv) = (x+ u) + i(y + v),

(x+ iy)(u+ iv) = xu+ iyu+ ixv + i2yv = (xu− yv) + i(yu+ xv).
(1)

Formally, we define a complex number to be an ordered pair of real numbers (x, y). Motivated by the
heuristic calculations above, we define addition and multiplication of complex numbers by

(x, y) + (u, v) = (x+ u, y + v), (x, y)(u, v) = (xu− yv, yu+ xv).

The set of all complex numbers, called the complex plane, is denoted by C; as a set, it is the same as R2,
but with additional operations defined on it.

For any real number x, when we’re working in the complex number system we typically use x as a
shorthand notation for the complex number (x, 0), and thereby consider R as a subset of C. Note that the
addition and multiplication rules for these “real complex numbers” correspond to ordinary addition and
multiplication in R:

(x, 0) + (u, 0) = (x+ u, 0), (x, 0)(y, 0) = (xy, 0).

We define i to be the complex number (0, 1), and note that it satisfies

i2 = (0, 1)(0, 1) = (0 · 0− 1 · 1, 1 · 0 + 0 · 1) = (−1, 0) = −1.

Thus any complex number (x, y) can also be written as x+ iy, because the latter is shorthand for

(x, 0) + (0, 1)(y, 0) = (x, 0) + (0 · y − 1 · 0, 1 · y + 0 · 0) = (x, y).

With this understanding, we will almost always write complex numbers in the form x+ iy rather than (x, y),
and complex addition and multiplication actually do obey the rules in (1). Note that the definition implies
that x + iy = u + iv if and only if x = u and y = v. Typically we use the letters w and z to represent
individual complex numbers, with w = u + iv and z = x + iy. A complex number of the form iy = 0 + iy
for y ∈ R is called an imaginary number (or sometimes pure imaginary). The term “imaginary” is a
historical holdover—it took mathematicians some time to accept the fact that i (for “imaginary,” naturally)
was a perfectly good mathematical object. Electrical engineers (who make heavy use of complex numbers)
reserve the letter i to denote electric current and they use j for the complex number (0, 1).

Proposition 1. Complex addition and multiplication satisfy the commutative, associative, and distributive

laws. The number 0 = 0 + 0i is an additive identity, and 1 = 1 + 0i is a multiplicative identity. Every

complex number has an additive inverse, and every nonzero complex number has a multiplicative inverse.

Thus the complex numbers form a field.

Proof. Commutativity and associativity of addition are easy to check, as are commutativity of multiplication
and the fact that 0 and 1 function as identities for addition and multiplication. The additive inverse of x+ iy
is (−x)+ i(−y), as you can quickly verify. Associativity of multiplication and the distributive law connecting
addition and multiplication are straightforward but tedious calculations and are left as exercises.

The only part of the proposition that is not quite straightforward is the existence of multiplicative
inverses. Suppose x+ iy is a nonzero complex number. Note that (x+ iy)(x− iy) = x2 + iyx− ixy− i2y2 =
x2 + y2 6= 0. Reasoning heuristically for a moment, we carry out the following computation to “rationalize
the denominator” and derive an expression for (x+ iy)−1:

1
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1
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x− iy
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. (2)
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This last expression is a well-defined complex number because x2 + y2 6= 0, and you can check by direct
computation that its product with x+ iy is equal to 1 (see Exercise 1(c) below). �

Exercises 1.

(a) Prove that complex multiplication is associative.
(b) Prove that complex addition and multiplication satisfy the distributive law.
(c) Prove that the product of z = x+ iy and the expression on the right-hand side of (2) equals 1.
(d) Verify each of the following:

1. (
√
2− i)− i(1−

√
2i) = −2i

2.
1 + 2i

3− 4i
+

2− i

5i
= −2

5

3.
5

(1− i)(2− i)(3− i)
=

1

2
i

4. (1− i)4 = −4
(e) Find all complex numbers z = x+ iy such that z2 = 1 + i.

Thanks to the preceding proposition, all of the theorems about real numbers that can be proved using
only the field axioms are true of the complex numbers as well. However, there is no useful ordering of the
complex numbers, so it doesn’t make sense to say z < w unless both z and w are real. In fact, it is common
practice in mathematical writing to interpret the statement “x < y” to mean “x and y are real numbers and
x is less than y.”

If z = x+ iy with x and y real, we call x the real part of z and y the imaginary part, and we write
x = Re z, y = Im z. (Note that the imaginary part of z is a real number! ) Thus z1 = z2 if and only if
Re z1 = Re z2 and Im z1 = Im z2.

The complex numbers, being essentially ordered pairs of real numbers, can be visulalized as points in
the plane (sometimes called an Argand diagram in this context). The x-axis is called the real axis and
contains the set of real numbers (thought of as a subset of the complex numbers), and the y-axis is called
the imaginary axis and contains all of the imaginary numbers. For example, the complex numbers 3 + 4i
and 3− 4i are illustrated in Fig. 1, and complex addition in Fig. 2.

3 + 4i

3− 4i

Fig. 1. Complex numbers in the plane

4 + 2i

2 + 6i

(4 + 2i) + (2 + 6i) = 6 + 8i

Fig. 2. Addition of complex numbers

The geometric interpretation of complex multiplication is more complicated; we will return to it later
when we treat the polar representation of complex numbers.

The expression x− iy appears so often and is so useful that it is given a name. It is called the complex

conjugate of z = x + iy and a shorthand notation for it is z; that is, if z = x + iy, then z = x − iy. For
example, 3 + 4i = 3− 4i, as illustrated in Fig. 1.
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Another important quantity associated with a given complex number z is its modulus or absolute

value |z|, which is the Euclidean distance from the origin to the point z:

|z| =
√

x2 + y2 =
(

(Re z)2 + (Im z)2
)1/2

.

Note that |z| is a real number. For example, |3 + 4i| =
√
32 + 42 =

√
25 = 5. This leads to the inequality

Re z ≤ |Re z| =
»

(Re z)2 ≤
»

(Re z)2 + (Im z)2 = |z|
Similarly, Im z ≤ |Im z| ≤ |z|.

Exercises 2.

Prove the following for all complex numbers z and w:

(a) z + w = z + w.
(b) zw = z · w.
(c) zz = |z|2.
(d) |z| = |z|.
(e) |zw| = |z||w|.
(f) |cz| = c|z| if c > 0.
(g) If z 6= 0, then z/|z| has modulus 1.
(h) Re z = (z + z)/2.
(i) Im z = (z − z)/(2i).
(j) z is a real number if and only if z = z.
(k) z is an imaginary number if and only if z = −z.

2. Complex-valued Functions

We will sometimes have occasion to discuss complex-valued functions of a real variable. (Complex-valued
functions of a complex variable constitute a whole different subject, called complex analysis, which we will
not treat.) In general, a complex-valued function w = w(t) of the real variable t can be written

w(t) = u(t) + iv(t)

where u and v are real-valued functions. A complex-valued function can be thought of a defining a param-
etrized curve in the complex plane.

Given such a function w(t) = u(t)+ iv(t), we say w is differentiable if both u and v are, and we define
the derivative of w(t) with respect to t to be the function

w′(t) = u′(t) + iv′(t).

Proposition 2. If w = w(t) and z = z(t) are differentiable complex-valued functions of a real variable, then

the following formulas hold:

(a) w′ = 0 if w is a constant curve, w(t) ≡ C.

(b) (z + w)′ = z′ + w′.

(c) (zw)′ = z′w + zw′.

(d) (az)′ = az′ for a ∈ R.

(e) (zn)′ = nzn−1z′ for n ∈ Z
+.

(f ) (1/z)′ = −z′/z2 wherever z 6= 0.

Exercises 3. Prove the preceding proposition by expanding the left- and right-hand sides of each identity
in terms of real and imaginary parts.

3. The Complex Exponential Function

Next, we’d like to make sense of the exponential function ez when z is a complex number. Writing
z = x+ iy, we would expect that

ez = ex+iy = exeiy.
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We already know how to interpret ex, so the only new thing we have to make sense of is eiy when y is a real
number.

Here are two approaches to making sense of this expression. First, recall the power series expansion for
ex when x is real:

ex =
∞
∑

k=0

xk

k!
.

Just computing formally for the moment, without worrying about convergence, we might try substituting
x = it to get

eit =
∞
∑

k=0

(it)k

k!
= 1 + it+

(it)2

2!
+

(it)3

3!
+ . . .+

(it)n

n!
+ . . . .

Note that even powers of i are all real, because i2j = (i2)j = (−1)j , and odd powers have an extra factor
of i and are thus all imaginary. Let us separate the even and odd terms in the series, writing k = 2j in the
even case and k = 2j + 1 in the odd case. This gives

eit =
∞
∑

j=0

(it)2j

(2j)!
+

∞
∑

j=0

(it)2j+1

(2j + 1)!

=
∞
∑

j=0

(−1)jt2j

(2j)!
+ i

∞
∑

j=0

(−1)jt2j+1

(2j + 1)!
.

But these last two series should be familiar: They are the series expansions for cos t and sin t, respectively!
Therefore, we are led to guess that a reasonable interpretation for eit might be

eit = cos t+ i sin t. (3)

Here’s another way to approach the question. We can hope that, however we decide to define eit, it
should obey the usual rules of calculus. Let’s separate out the real and imaginary parts of eit and write
them as follows:

eit = u(t) + iv(t),

where u and v are real-valued functions of the real variable t. Assuming that all the usual rules of calculus
apply when we differentiate a complex-valued function with respect to t, we just blithely differentiate both
sides of this equation to find

ieit = u′(t) + iv′(t).

The left-hand side of this equation is i
(

u(t) + iv(t)
)

= −v(t) + iu(t), so equating real and imaginary parts
yields

u′(t) = −v(t),

v′(t) = u(t).

Assuming u is twice differentiable, this in turn implies u′′(t) = −v′(t) = −u(t). We also should expect that
ei0 = 1 = 1 + 0i, which implies that u(0) = 1 and v(0) = 0, and therefore from the equations above we
conclude that u′(0) = 0. Thus, if there’s any justice in the world, u should be a solution to the following
initial-value problem:

u′′(t) + u(t) = 0,

u(0) = 1,

u′(0) = 0.

It is not hard to guess that a solution to this problem is u(t) = cos t, and the existence and uniqueness
theorem guarantees that it is the only solution. This in turn implies v(t) = −u′(t) = sin t. Once again, we
are let to expect that eit = cos t+ i sin t should be a reasonable interpretation of eit.

Motivated by these computations, let us simply define eit for real t by the following formula, known as
Euler’s formula:

eit = cos t+ i sin t.
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Then we extend the definition to arbitrary complex exponents by means of the following formula for any
z = x+ iy ∈ C:

ez = exeiy = ex(cos y + i sin y).

For example,

e2πi = +1, eiπ/2 = i, eiπ/6 =
√
3 + i,

and one of the most elegant and intriguing equations in all of mathematics,

eiπ = −1, or equivalently, eiπ + 1 = 0.

The second version ties together the five most fundamental constants in mathematics (0, 1, e, i, and π),
the three most fundamental operations (addition, multiplication, and exponentiation), and the single most
important relation (equality). It makes a compelling case for the unity and beauty of mathematics.

Exercises 4. Prove the following facts for all z, w ∈ C:

(a) ez = ez.
(b) |ez| = eRe z.
(c) 1/(ez) = e−z.
(d) ez+w = ezew.
(e) [deleted]

(f)
d

dt

(

ezt
)

= zezt for all t ∈ R.

4. Polar Representation of Complex Numbers

Recall that we can represent points in the plane using polar coordinates as well as rectangular coordinates.
The relation between the rectangular coordinates (x, y) and the polar coordinates [r, θ] is

x = r cos θ, y = r sin θ.

Thus for the complex number z = x+ iy, we can write

z = r(cos θ + i sin θ).

Using the complex exponential function introduced above, this can be written in the more compact form

z = reiθ.

It follows from Exercise 4(b) above that |eiθ| = 1, so we can recover r and θ by setting r = |reiθ| = |z| and
choosing θ to be any angle such that cos θ = x/r and sin θ = y/r. (When working with polar coordinates in

the complex plane, we will always insist that r ≥ 0.) For example, the complex number z = 2
√
3 + 2i can

also be written as 2eiπ/6, as illustrated in Fig. 3.

z = 2
√
3 + 2i

θ = π/6

r = |z| = 2

Fig. 3. Polar coordinates in C

z

zw

θ1

θ2

Fig. 4. Multiplication of complex numbers
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The conditions for equality of two complex numbers using polar coordinates are not quite as simple as
they were for rectangular coordinates. If z1 = r1e

iθ1 and z2 = r2e
iθ2 , then z1 = z2 if and only if r1 = r2 and

θ1 = θ2 + 2πk for some k ∈ Z.

The polar coordinate representation gives us an easy way to interpret complex multiplication geometri-
cally. Note that the angle-sum formulas for sine and cosine yield the following simple formula:

(eiθ1)(eiθ2) = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)

= cos(θ1 + θ2) + i sin(θ1 + θ2)

= ei(θ1+θ2).

Thus if z = r1e
iθ1 and w = r2e

iθ2 , then
zw = r1r2e

i(θ1+θ2).

(See Fig. 4.) In other words, multiplication by w = r2e
iθ2 has the geometric effect of scaling the modulus by

|w| and rotating the direction through an angle θ2 (counterclockwise if θ2 > 0, and clockwise if θ2 < 0).

An easy inductive argument shows that

If z = reiθ, then zn = rneinθ.

This makes it easy to solve equations like z3 = 1. Indeed, writing the unknown number z as reiθ, we have
r3ei3θ = 1 = e0i, hence r3 = 1 (so r = 1) and 3θ = 2kπ for some k ∈ Z. It follows that θ = 2kπ/3, k ∈ Z.

There are only three distinct complex numbers of the form e2kπi/3, namely e0 = 1, e2πi/3 = −
√
3 + 1

2 i, and

e4πi/3 = −
√
3 − 1

2 i. The following figure illustrates z = 8i = 8eiπ/2 and its three cube roots z1 = 2eiπ/6,

z2 = 2e5iπ/6, z3 = 2e9iπ/6:

r

8i = 8eπi/2

r

2eπi/6

r

2e5πi/6

r 2e9πi/6

Fig. 5: The cube roots of 8i

From the fact that (eiθ)n = einθ we obtain De Moivre’s formula:

(cos θ + i sin θ)n = cosnθ + i sinnθ

By expanding on the left and equating real and imaginary parts, we can deduce trigonometric identities that
can be used to express cosnθ and sinnθ as a sum of terms of the form (cos θ)j(sin θ)k. For example, taking
n = 2 one gets cos 2θ = cos2 θ − sin2 θ. For n = 3 one gets cos 3θ = cos3 θ − cos θ sin2 θ − 2 sin2 θ cos2 θ.

Exercises 5.

(a) Let z1 = 3i and z2 = 2− 2i
1. Plot the points z1 + z2, z1 − z2 and z2.
2. Compute |z1 + z2| and |z1 − z2|.
3. Express z1 and z2 in polar form.

(b) Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1, z2, z1z2 and z1/z2.
(c) Find all complex numbers z that satisfy z3 = −1.

(d) Find all complex numbers z = reiθ such that z2 =
√
2eiπ/4.


