Math 135 Honors Calculus Winter 2017

Handout 2: The Extreme Value Theorem in Two Variables

First, recall a couple of definitions for functions of two variables. Given two points (z1,y1) and (22,y2)
in the plane, the Fuclidean distance between them is

d((x1,91), (@2,92)) = /(22 — 21)2 + (32 — y1)2

Now suppose I, J C R are intervals (they can be closed or open, bounded or unbounded), and f: I xJ —
R is a function. Given (a,b) € I x J, we say f is continuous at (a, b) if for every & > 0, there exists § > 0
such that whenever (z,y) € I x J and d((z,y), (a,b)) < 6, we have | f(z,y) — f(a,b)| < e. If f is continuous
at every point of I x J, we simply say that f is continuous.

Theorem 1. Suppose f: [a,b] X [c,d] — R is continuous. Then it achieves its mazimum and minimum
values at points of [a,b] X [c,d].

Proof. First, for simplicity, we’ll rescale the rectangle on which f is defined. If we define

f(xay> :f(a+(bia)xvc+(dic)y)7

then it is easy to check that f is continuous on the square [0,1] x [0,1], and f takes its maximum or minimum
at a point (z,y) if and only if f takes its maximum or minimum at (a+ (b —a)z,c+ (d— ¢)y). Let us simply
replace f by f, so henceforth we may assume f is continuous on [0,1] x [0,1]. Let So = [0,1] x [0,1].

We’ll prove the theorem in two steps. The first step is to show that f is bounded: That is, there is a
number C such that |f(z,y)| < C for all (z,y) € Sy. Suppose for contradiction that it is not. Divide Sy into
four smaller squares of side length % as follows:

0.31x0.3, 033, EUxl],

[3,1] % [3,1].

If f were bounded on each of these squares, it would be bounded on Sy, since we could just take the largest of
the four bounds as a bound for |f(z,y)| on the whole rectangle. Thus since we are assuming f is unbounded
on Sy, it must be unbounded on at least one of these four smaller squares. Choose one; let’s call that smaller

square S7, and label its boundaries as [a1,b1] X [e1,d4].

Now do it again: Divide S7 into four squares of side length %. Since f is unbounded on S7, it must be
unbounded on one of the smaller squares; call it Sy, and label its boundaries as [ag, ba] X [c2, d2]. Continuing
by induction, we obtain a sequence of squares Sp 2 51 D Sy D ..., with S, = [an, bs] X [¢n, dy], such that f
is unbounded on each S, and the side length of S,, is 1/2™. Notice also that because we chose S,4+1 to be
contained in S, for each n we have

0<a1<az<az < <ap<b, <---<bg<by<by <1,

and similarly for the ¢;’s and d;’s. This means that the sequence ai,as,... is nondecreasing and bounded
above, and therefore has a limit by the monotone sequences theorem; call the limit a.,. Because b,, — a,, =
1/2™ for each n, we have

an, < b, =a, +
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so the pinching theorem implies that b,, also converges to the same limit. By similar reasoning, the sequences
c1,C2, ... and dy,ds, ... both converge to a limit, which we call c,. Because a,, < ao < b, and ¢, < €0 < dp,

for each n, the point (@, coo) actually lies in every square S,.

Since f is continuous at the point (@, Coo), there is some § > 0 such that whenever (z,y) is in the
domain of f and d((z,y), (4o, ¢eo)) < 8, we have |f(2,y) — f(doo, Co)| < 1. Thus for all such (z,y), we have
the bounds

flase; coo) =1 < f(2,y) < [l o) + 1. (1)

Now choose n large enough that 1/2" < §/2. Since (@oo, o) lies in the square S,, with side length 1/2", it
follows that every point (z,y) € S, satisfies | — aso| < 6/2 and |y — coo| < §/2 and therefore,

d((l’,y), (aomcoo)) = \/({E - aoo)2 + (y - 000)2 < \/(5/2)2 + (5/2)2 = jg < 4.




Thus for every (z,y) € S,, we see that f(x,y) satisfies the bound (1). But this is a contradiction, because
f is unbounded on S,,. This completes the proof that f is bounded.

Now we have to show that f actually achieves its maximum and minumum. We’ll prove it achieves its
maximum; the proof for the minimum follows by considering the function — f.

Let M = lub{f(z,y) : (x,y) € So}. The first part of the proof showed that M is a well-defined real
number. We proceed as above: First divide Sy into four squares of side length % On each of those smaller
squares, f is bounded above by M, so it has a least upper bound on each such square that is less than or
equal to M. If the least upper bound were strictly less than M on all four squares, then it would be less than
M on Sy, which is a contradiction; therefore at least one of the smaller squares must have the property that
the restriction of f to that square still has least upper bound equal to M. Continue as above to produce a
sequence of squares Sp 2 S1 2 52 O ... and a point (@, o) such that

® (G0, Coo) lies in each of the squares S,;
e S, has side length 1/2™;

e The least upper bound of f on S, is equal to M.

Now let L = f(awo,Co0). Since M is an upper bound for f, it follows that L < M. If L = M, then f
achieves its maximum at (@, o), and we are done. So assume for contradiction that L < M.

Let e = (M —L)/2, so that € > 0 and L+ = M —e. By continuity, there exists § > 0 such that whenever
(z,y) € So and d((x,y), (aoo; Coo)) < &, we have |f(x,y) — f(aoo, Coo)| < €. This means the following holds
for all such (z,y):

flx,y) < flaoo,C0) +e=L+e=M—c¢.

If we choose n large enough that 1/2™ < §/2, the same argument as above shows that every point (x,y) € S,
satsifies this inequality. However, because the least upper bound of f on S, is equal to M, the basic
property of least upper bounds (Theorem 11.1.2 in [SHE]) shows that there is some point (z,y) € S, such
that f(x,y) > M — e. This is a contradiction, which shows that our assumption that L < M was wrong,
and f attains its maximum at (Geo, Coo)- O



