
Math 135 Honors Calculus Winter 2017

Handout 2: The Extreme Value Theorem in Two Variables

First, recall a couple of definitions for functions of two variables. Given two points (x1, y1) and (x2, y2)
in the plane, the Euclidean distance between them is

d
(
(x1, y1), (x2, y2))

)
=
»

(x2 − x1)2 + (y2 − y1)2.

Now suppose I, J ⊆ R are intervals (they can be closed or open, bounded or unbounded), and f : I×J →
R is a function. Given (a, b) ∈ I × J , we say f is continuous at (a, b) if for every ε > 0, there exists δ > 0
such that whenever (x, y) ∈ I × J and d

(
(x, y), (a, b)

)
< δ, we have |f(x, y)− f(a, b)| < ε. If f is continuous

at every point of I × J , we simply say that f is continuous.

Theorem 1. Suppose f : [a, b] × [c, d] → R is continuous. Then it achieves its maximum and minimum

values at points of [a, b]× [c, d].

Proof. First, for simplicity, we’ll rescale the rectangle on which f is defined. If we define

f̃(x, y) = f(a+ (b− a)x, c+ (d− c)y),

then it is easy to check that f̃ is continuous on the square [0, 1]× [0, 1], and f̃ takes its maximum or minimum
at a point (x, y) if and only if f takes its maximum or minimum at (a+(b−a)x, c+(d− c)y). Let us simply

replace f by f̃ , so henceforth we may assume f is continuous on [0, 1]× [0, 1]. Let S0 = [0, 1]× [0, 1].

We’ll prove the theorem in two steps. The first step is to show that f is bounded: That is, there is a
number C such that |f(x, y)| ≤ C for all (x, y) ∈ S0. Suppose for contradiction that it is not. Divide S0 into
four smaller squares of side length 1

2
as follows:

[0, 1

2
]× [0, 1

2
], [0, 1

2
]× [ 1

2
, 1], [ 1

2
, 1]× [0, 1

2
], [ 1

2
, 1]× [ 1

2
, 1].

If f were bounded on each of these squares, it would be bounded on S0, since we could just take the largest of
the four bounds as a bound for |f(x, y)| on the whole rectangle. Thus since we are assuming f is unbounded
on S0, it must be unbounded on at least one of these four smaller squares. Choose one; let’s call that smaller
square S1, and label its boundaries as [a1, b1]× [c1, d1].

Now do it again: Divide S1 into four squares of side length 1

4
. Since f is unbounded on S1, it must be

unbounded on one of the smaller squares; call it S2, and label its boundaries as [a2, b2]× [c2, d2]. Continuing
by induction, we obtain a sequence of squares S0 ⊇ S1 ⊇ S2 ⊇ . . . , with Sn = [an, bn]× [cn, dn], such that f
is unbounded on each Sn, and the side length of Sn is 1/2n. Notice also that because we chose Sn+1 to be
contained in Sn, for each n we have

0 ≤ a1 ≤ a2 ≤ a3 ≤ · · · ≤ an < bn ≤ · · · ≤ b3 ≤ b2 ≤ b1 ≤ 1,

and similarly for the ci’s and di’s. This means that the sequence a1, a2, . . . is nondecreasing and bounded
above, and therefore has a limit by the monotone sequences theorem; call the limit a∞. Because bn − an =
1/2n for each n, we have

an < bn = an +
1

2n
,

so the pinching theorem implies that bn also converges to the same limit. By similar reasoning, the sequences
c1, c2, . . . and d1, d2, . . . both converge to a limit, which we call c∞. Because an ≤ a∞ ≤ bn and cn ≤ c∞ ≤ dn
for each n, the point (a∞, c∞) actually lies in every square Sn.

Since f is continuous at the point (a∞, c∞), there is some δ > 0 such that whenever (x, y) is in the
domain of f and d

(
(x, y), (a∞, c∞)

)
< δ, we have |f(x, y)−f(a∞, c∞)| < 1. Thus for all such (x, y), we have

the bounds
f(a∞, c∞)− 1 ≤ f(x, y) ≤ f(a∞, c∞) + 1. (1)

Now choose n large enough that 1/2n < δ/2. Since (a∞, c∞) lies in the square Sn with side length 1/2n, it
follows that every point (x, y) ∈ Sn satisfies |x− a∞| < δ/2 and |y − c∞| < δ/2 and therefore,

d
(
(x, y), (a∞, c∞)

)
=
»

(x− a∞)2 + (y − c∞)2 <
»

(δ/2)2 + (δ/2)2 =
δ√
8
< δ.

1



Thus for every (x, y) ∈ Sn, we see that f(x, y) satisfies the bound (1). But this is a contradiction, because
f is unbounded on Sn. This completes the proof that f is bounded.

Now we have to show that f actually achieves its maximum and minumum. We’ll prove it achieves its
maximum; the proof for the minimum follows by considering the function −f .

Let M = lub{f(x, y) : (x, y) ∈ S0}. The first part of the proof showed that M is a well-defined real
number. We proceed as above: First divide S0 into four squares of side length 1

2
. On each of those smaller

squares, f is bounded above by M , so it has a least upper bound on each such square that is less than or
equal to M . If the least upper bound were strictly less than M on all four squares, then it would be less than
M on S0, which is a contradiction; therefore at least one of the smaller squares must have the property that
the restriction of f to that square still has least upper bound equal to M . Continue as above to produce a
sequence of squares S0 ⊇ S1 ⊇ S2 ⊇ . . . and a point (a∞, c∞) such that

• (a∞, c∞) lies in each of the squares Sn;

• Sn has side length 1/2n;

• The least upper bound of f on Sn is equal to M .

Now let L = f(a∞, c∞). Since M is an upper bound for f , it follows that L ≤ M . If L = M , then f
achieves its maximum at (a∞, c∞), and we are done. So assume for contradiction that L < M .

Let ε = (M−L)/2, so that ε > 0 and L+ε = M−ε. By continuity, there exists δ > 0 such that whenever
(x, y) ∈ S0 and d

(
(x, y), (a∞, c∞)

)
< δ, we have |f(x, y) − f(a∞, c∞)| < ε. This means the following holds

for all such (x, y):
f(x, y) < f(a∞, c∞) + ε = L+ ε = M − ε.

If we choose n large enough that 1/2n < δ/2, the same argument as above shows that every point (x, y) ∈ Sn

satsifies this inequality. However, because the least upper bound of f on Sn is equal to M , the basic
property of least upper bounds (Theorem 11.1.2 in [SHE]) shows that there is some point (x, y) ∈ Sn such
that f(x, y) > M − ε. This is a contradiction, which shows that our assumption that L < M was wrong,
and f attains its maximum at (a∞, c∞).
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