Math 135

Honors Calculus

Handout 2: The Extreme Value Theorem in Two Variables

First, recall a couple of definitions for functions of two variables. Given two points (x_1, y_1) and (x_2, y_2) in the plane, the **Euclidean distance** between them is

$$d((x_1, y_1), (x_2, y_2))) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Now suppose $I, J \subseteq \mathbb{R}$ are intervals (they can be closed or open, bounded or unbounded), and $f: I \times J \to \mathbb{R}$ is a function. Given $(a, b) \in I \times J$, we say f is **continuous at** (a, b) if for every $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $(x, y) \in I \times J$ and $d((x, y), (a, b)) < \delta$, we have $|f(x, y) - f(a, b)| < \varepsilon$. If f is continuous at every point of $I \times J$, we simply say that f is **continuous**.

Theorem 1. Suppose $f: [a,b] \times [c,d] \to \mathbb{R}$ is continuous. Then it achieves its maximum and minimum values at points of $[a,b] \times [c,d]$.

Proof. First, for simplicity, we'll rescale the rectangle on which f is defined. If we define

$$f(x,y) = f(a + (b - a)x, c + (d - c)y),$$

then it is easy to check that \tilde{f} is continuous on the square $[0,1] \times [0,1]$, and \tilde{f} takes its maximum or minimum at a point (x, y) if and only if f takes its maximum or minimum at (a + (b - a)x, c + (d - c)y). Let us simply replace f by \tilde{f} , so henceforth we may assume f is continuous on $[0,1] \times [0,1]$. Let $S_0 = [0,1] \times [0,1]$.

We'll prove the theorem in two steps. The first step is to show that f is bounded: That is, there is a number C such that $|f(x,y)| \leq C$ for all $(x,y) \in S_0$. Suppose for contradiction that it is not. Divide S_0 into four smaller squares of side length $\frac{1}{2}$ as follows:

$$[0, \frac{1}{2}] \times [0, \frac{1}{2}], \qquad [0, \frac{1}{2}] \times [\frac{1}{2}, 1], \qquad [\frac{1}{2}, 1] \times [0, \frac{1}{2}], \qquad [\frac{1}{2}, 1] \times [\frac{1}{2}, 1].$$

If f were bounded on each of these squares, it would be bounded on S_0 , since we could just take the largest of the four bounds as a bound for |f(x, y)| on the whole rectangle. Thus since we are assuming f is unbounded on S_0 , it must be unbounded on at least one of these four smaller squares. Choose one; let's call that smaller square S_1 , and label its boundaries as $[a_1, b_1] \times [c_1, d_1]$.

Now do it again: Divide S_1 into four squares of side length $\frac{1}{4}$. Since f is unbounded on S_1 , it must be unbounded on one of the smaller squares; call it S_2 , and label its boundaries as $[a_2, b_2] \times [c_2, d_2]$. Continuing by induction, we obtain a sequence of squares $S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots$, with $S_n = [a_n, b_n] \times [c_n, d_n]$, such that fis unbounded on each S_n , and the side length of S_n is $1/2^n$. Notice also that because we chose S_{n+1} to be contained in S_n , for each n we have

$$0 \le a_1 \le a_2 \le a_3 \le \dots \le a_n < b_n \le \dots \le b_3 \le b_2 \le b_1 \le 1,$$

and similarly for the c_i 's and d_i 's. This means that the sequence a_1, a_2, \ldots is nondecreasing and bounded above, and therefore has a limit by the monotone sequences theorem; call the limit a_{∞} . Because $b_n - a_n = 1/2^n$ for each n, we have

$$a_n < b_n = a_n + \frac{1}{2^n},$$

so the pinching theorem implies that b_n also converges to the same limit. By similar reasoning, the sequences c_1, c_2, \ldots and d_1, d_2, \ldots both converge to a limit, which we call c_{∞} . Because $a_n \leq a_{\infty} \leq b_n$ and $c_n \leq c_{\infty} \leq d_n$ for each n, the point (a_{∞}, c_{∞}) actually lies in every square S_n .

Since f is continuous at the point (a_{∞}, c_{∞}) , there is some $\delta > 0$ such that whenever (x, y) is in the domain of f and $d((x, y), (a_{\infty}, c_{\infty})) < \delta$, we have $|f(x, y) - f(a_{\infty}, c_{\infty})| < 1$. Thus for all such (x, y), we have the bounds

$$f(a_{\infty}, c_{\infty}) - 1 \le f(x, y) \le f(a_{\infty}, c_{\infty}) + 1.$$

$$\tag{1}$$

Now choose n large enough that $1/2^n < \delta/2$. Since (a_{∞}, c_{∞}) lies in the square S_n with side length $1/2^n$, it follows that every point $(x, y) \in S_n$ satisfies $|x - a_{\infty}| < \delta/2$ and $|y - c_{\infty}| < \delta/2$ and therefore,

$$d((x,y),(a_{\infty},c_{\infty})) = \sqrt{(x-a_{\infty})^2 + (y-c_{\infty})^2} < \sqrt{(\delta/2)^2 + (\delta/2)^2} = \frac{\delta}{\sqrt{8}} < \delta.$$

Thus for every $(x, y) \in S_n$, we see that f(x, y) satisfies the bound (1). But this is a contradiction, because f is unbounded on S_n . This completes the proof that f is bounded.

Now we have to show that f actually achieves its maximum and minumum. We'll prove it achieves its maximum; the proof for the minimum follows by considering the function -f.

Let $M = \text{lub}\{f(x, y) : (x, y) \in S_0\}$. The first part of the proof showed that M is a well-defined real number. We proceed as above: First divide S_0 into four squares of side length $\frac{1}{2}$. On each of those smaller squares, f is bounded above by M, so it has a least upper bound on each such square that is less than or equal to M. If the least upper bound were strictly less than M on all four squares, then it would be less than M on S_0 , which is a contradiction; therefore at least one of the smaller squares must have the property that the restriction of f to that square still has least upper bound equal to M. Continue as above to produce a sequence of squares $S_0 \supseteq S_1 \supseteq S_2 \supseteq \ldots$ and a point (a_{∞}, c_{∞}) such that

- (a_{∞}, c_{∞}) lies in each of the squares S_n ;
- S_n has side length $1/2^n$;
- The least upper bound of f on S_n is equal to M.

Now let $L = f(a_{\infty}, c_{\infty})$. Since M is an upper bound for f, it follows that $L \leq M$. If L = M, then f achieves its maximum at (a_{∞}, c_{∞}) , and we are done. So assume for contradiction that L < M.

Let $\varepsilon = (M-L)/2$, so that $\varepsilon > 0$ and $L+\varepsilon = M-\varepsilon$. By continuity, there exists $\delta > 0$ such that whenever $(x, y) \in S_0$ and $d((x, y), (a_{\infty}, c_{\infty})) < \delta$, we have $|f(x, y) - f(a_{\infty}, c_{\infty})| < \varepsilon$. This means the following holds for all such (x, y):

$$f(x,y) < f(a_{\infty}, c_{\infty}) + \varepsilon = L + \varepsilon = M - \varepsilon.$$

If we choose n large enough that $1/2^n < \delta/2$, the same argument as above shows that every point $(x, y) \in S_n$ satsifies this inequality. However, because the least upper bound of f on S_n is equal to M, the basic property of least upper bounds (Theorem 11.1.2 in [SHE]) shows that there is some point $(x, y) \in S_n$ such that $f(x, y) > M - \varepsilon$. This is a contradiction, which shows that our assumption that L < M was wrong, and f attains its maximum at (a_{∞}, c_{∞}) .