Handout 2: The Extreme Value Theorem in Two Variables

First, recall a couple of definitions for functions of two variables. Given two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in the plane, the Euclidean distance between them is

$$
\left.d\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)\right)=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Now suppose $I, J \subseteq \mathbb{R}$ are intervals (they can be closed or open, bounded or unbounded), and $f: I \times J \rightarrow$ \mathbb{R} is a function. Given $(a, b) \in I \times J$, we say f is continuous at $(\boldsymbol{a}, \boldsymbol{b})$ if for every $\varepsilon>0$, there exists $\delta>0$ such that whenever $(x, y) \in I \times J$ and $d((x, y),(a, b))<\delta$, we have $|f(x, y)-f(a, b)|<\varepsilon$. If f is continuous at every point of $I \times J$, we simply say that f is continuous.

Theorem 1. Suppose $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continuous. Then it achieves its maximum and minimum values at points of $[a, b] \times[c, d]$.

Proof. First, for simplicity, we'll rescale the rectangle on which f is defined. If we define

$$
\widetilde{f}(x, y)=f(a+(b-a) x, c+(d-c) y)
$$

then it is easy to check that \tilde{f} is continuous on the square $[0,1] \times[0,1]$, and \tilde{f} takes its maximum or minimum at a point (x, y) if and only if f takes its maximum or minimum at $(a+(b-a) x, c+(d-c) y)$. Let us simply replace f by \widetilde{f}, so henceforth we may assume f is continuous on $[0,1] \times[0,1]$. Let $S_{0}=[0,1] \times[0,1]$.

We'll prove the theorem in two steps. The first step is to show that f is bounded: That is, there is a number C such that $|f(x, y)| \leq C$ for all $(x, y) \in S_{0}$. Suppose for contradiction that it is not. Divide S_{0} into four smaller squares of side length $\frac{1}{2}$ as follows:

$$
\left[0, \frac{1}{2}\right] \times\left[0, \frac{1}{2}\right], \quad\left[0, \frac{1}{2}\right] \times\left[\frac{1}{2}, 1\right], \quad\left[\frac{1}{2}, 1\right] \times\left[0, \frac{1}{2}\right], \quad\left[\frac{1}{2}, 1\right] \times\left[\frac{1}{2}, 1\right]
$$

If f were bounded on each of these squares, it would be bounded on S_{0}, since we could just take the largest of the four bounds as a bound for $|f(x, y)|$ on the whole rectangle. Thus since we are assuming f is unbounded on S_{0}, it must be unbounded on at least one of these four smaller squares. Choose one; let's call that smaller square S_{1}, and label its boundaries as $\left[a_{1}, b_{1}\right] \times\left[c_{1}, d_{1}\right]$.

Now do it again: Divide S_{1} into four squares of side length $\frac{1}{4}$. Since f is unbounded on S_{1}, it must be unbounded on one of the smaller squares; call it S_{2}, and label its boundaries as $\left[a_{2}, b_{2}\right] \times\left[c_{2}, d_{2}\right]$. Continuing by induction, we obtain a sequence of squares $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots$, with $S_{n}=\left[a_{n}, b_{n}\right] \times\left[c_{n}, d_{n}\right]$, such that f is unbounded on each S_{n}, and the side length of S_{n} is $1 / 2^{n}$. Notice also that because we chose S_{n+1} to be contained in S_{n}, for each n we have

$$
0 \leq a_{1} \leq a_{2} \leq a_{3} \leq \cdots \leq a_{n}<b_{n} \leq \cdots \leq b_{3} \leq b_{2} \leq b_{1} \leq 1
$$

and similarly for the c_{i} 's and d_{i} 's. This means that the sequence a_{1}, a_{2}, \ldots is nondecreasing and bounded above, and therefore has a limit by the monotone sequences theorem; call the limit a_{∞}. Because $b_{n}-a_{n}=$ $1 / 2^{n}$ for each n, we have

$$
a_{n}<b_{n}=a_{n}+\frac{1}{2^{n}}
$$

so the pinching theorem implies that b_{n} also converges to the same limit. By similar reasoning, the sequences c_{1}, c_{2}, \ldots and d_{1}, d_{2}, \ldots both converge to a limit, which we call c_{∞}. Because $a_{n} \leq a_{\infty} \leq b_{n}$ and $c_{n} \leq c_{\infty} \leq d_{n}$ for each n, the point $\left(a_{\infty}, c_{\infty}\right)$ actually lies in every square S_{n}.

Since f is continuous at the point $\left(a_{\infty}, c_{\infty}\right)$, there is some $\delta>0$ such that whenever (x, y) is in the domain of f and $d\left((x, y),\left(a_{\infty}, c_{\infty}\right)\right)<\delta$, we have $\left|f(x, y)-f\left(a_{\infty}, c_{\infty}\right)\right|<1$. Thus for all such (x, y), we have the bounds

$$
\begin{equation*}
f\left(a_{\infty}, c_{\infty}\right)-1 \leq f(x, y) \leq f\left(a_{\infty}, c_{\infty}\right)+1 \tag{1}
\end{equation*}
$$

Now choose n large enough that $1 / 2^{n}<\delta / 2$. Since $\left(a_{\infty}, c_{\infty}\right)$ lies in the square S_{n} with side length $1 / 2^{n}$, it follows that every point $(x, y) \in S_{n}$ satisfies $\left|x-a_{\infty}\right|<\delta / 2$ and $\left|y-c_{\infty}\right|<\delta / 2$ and therefore,

$$
d\left((x, y),\left(a_{\infty}, c_{\infty}\right)\right)=\sqrt{\left(x-a_{\infty}\right)^{2}+\left(y-c_{\infty}\right)^{2}}<\sqrt{(\delta / 2)^{2}+(\delta / 2)^{2}}=\frac{\delta}{\sqrt{8}}<\delta
$$

Thus for every $(x, y) \in S_{n}$, we see that $f(x, y)$ satisfies the bound (1). But this is a contradiction, because f is unbounded on S_{n}. This completes the proof that f is bounded.

Now we have to show that f actually achieves its maximum and minumum. We'll prove it achieves its maximum; the proof for the minimum follows by considering the function $-f$.

Let $M=\operatorname{lub}\left\{f(x, y):(x, y) \in S_{0}\right\}$. The first part of the proof showed that M is a well-defined real number. We proceed as above: First divide S_{0} into four squares of side length $\frac{1}{2}$. On each of those smaller squares, f is bounded above by M, so it has a least upper bound on each such square that is less than or equal to M. If the least upper bound were strictly less than M on all four squares, then it would be less than M on S_{0}, which is a contradiction; therefore at least one of the smaller squares must have the property that the restriction of f to that square still has least upper bound equal to M. Continue as above to produce a sequence of squares $S_{0} \supseteq S_{1} \supseteq S_{2} \supseteq \ldots$ and a point $\left(a_{\infty}, c_{\infty}\right)$ such that

- $\left(a_{\infty}, c_{\infty}\right)$ lies in each of the squares S_{n};
- S_{n} has side length $1 / 2^{n}$;
- The least upper bound of f on S_{n} is equal to M.

Now let $L=f\left(a_{\infty}, c_{\infty}\right)$. Since M is an upper bound for f, it follows that $L \leq M$. If $L=M$, then f achieves its maximum at $\left(a_{\infty}, c_{\infty}\right)$, and we are done. So assume for contradiction that $L<M$.

Let $\varepsilon=(M-L) / 2$, so that $\varepsilon>0$ and $L+\varepsilon=M-\varepsilon$. By continuity, there exists $\delta>0$ such that whenever $(x, y) \in S_{0}$ and $d\left((x, y),\left(a_{\infty}, c_{\infty}\right)\right)<\delta$, we have $\left|f(x, y)-f\left(a_{\infty}, c_{\infty}\right)\right|<\varepsilon$. This means the following holds for all such (x, y) :

$$
f(x, y)<f\left(a_{\infty}, c_{\infty}\right)+\varepsilon=L+\varepsilon=M-\varepsilon .
$$

If we choose n large enough that $1 / 2^{n}<\delta / 2$, the same argument as above shows that every point $(x, y) \in S_{n}$ satsifies this inequality. However, because the least upper bound of f on S_{n} is equal to M, the basic property of least upper bounds (Theorem 11.1.2 in [SHE]) shows that there is some point $(x, y) \in S_{n}$ such that $f(x, y)>M-\varepsilon$. This is a contradiction, which shows that our assumption that $L<M$ was wrong, and f attains its maximum at $\left(a_{\infty}, c_{\infty}\right)$.

