• Page 6, near the middle: The definition of \([a, b]\) should be
\[[a, b] = \{ x : a \leq x < b \}. \]

• Page 8, Example, first line: \(2^1\) should be equal to 2, not 1.

• Page 46, Problem 13: The definition of \(g\) should be
\[g(x) = \sqrt{x} - 2/\sqrt{x}. \]

• Page 51, Exercises 1.8, Problem 9: This is false for \(n = 1\), so either \(n\) needs to be restricted to \(n \geq 2\), or the inequality should be changed to \(\geq \sqrt{n}\).

• Page 60, Figure 2.1.14: The graph should show an open circle at \((0, 1)\), because \(f(0)\) is not defined.

• Page 74, Theorem 2.3.2: The statement of part (iii) should read as follows:
\[\lim_{x \to c} [\alpha f(x)] = \alpha L, \quad \alpha \text{ a real number}. \]

• Page 83, just below Figure 2.4.3: The definition of the Dirichlet function should be
\[f(x) = \begin{cases} 1, & x \text{ rational}, \\ 0, & x \text{ irrational}. \end{cases} \]

• Page 96, multiline display: On the second line, \(\tan^2 x - 1\) in the denominator should be \(\tan^2 x\).

• Page 105, Figure 3.1.1: The caption on the right-hand side should be \(h < 0\), not \(h > 0\).

• Page 117, 5th line of the proof: In the second set of brackets, change \(f(x - h)\) to \(f(x + h)\).

• Page 129, problem 61: The problem should say that \(n\) is a positive integer.

• Page 141, 4th displayed equation: The arrow should point to the second equal sign, not the first.

• Page 146, problem 67: Change “Exercise 62” to “Exercise 59.”

• Page 243, last line: Instead of \(\frac{13\pi}{16} \approx 8.5625\), it should say \(\frac{13\pi}{16} = 8.5625\).

• Page 252, Problems 14 and 15: \(L_f\) and \(U_f\) are printed in the wrong font: They should be ordinary italics, not script letters.

• Page 281, proof of (5.8.3), first line: Change “\(f(x) - f(x)\)” to “\(g(x) - f(x)\).”

• Page 514, formula (10.7.6): The formula should have \(ds/dt\) in place of the first \(dx/dt\):
\[\nu = \frac{ds}{dt} = \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2}. \]

• Page 516, Problem 38: should read “from time \(t = 0\) to time \(t = 2\pi\)” (not \(t = 2t\)).

• Page 530, Example 1(a): The condition on \(s\) should read
\[1 - 0.0001 < s \leq 1. \]

• Page A-16, solution to Problem 41: \(\text{range}(f) = \{-1, 1\}\).

• Page A-24, solution to Section 3.6 Problem 67(b): There’s a sign mistake in the last term. But more importantly, this argument is misleading, because you cannot conclude that the limit of a difference is the difference of the limits unless you know that both limits exist. Instead, this should be read as an argument by contradiction: assuming that \(g'(x)\) is continuous, it then follows from this computation that \(\cos(1/x)\) has a limit as \(x \to 0\), which is false.