(2/25/18) **Page xii, last paragraph:** Allen Hatcher’s name is misspelled. (Sorry, Allen.)

(2/14/15) **Page 23, Exercise 2.6, first line:** Change “collection of topologies” to “nonempty collection of topologies.”

(6/24/19) **Page 26, just above Exercise 2.12:** Replace the last sentence of the paragraph by “Symbolically, this is denoted by \(x_i \to x \).”

(6/18/19) **Page 27, paragraph before Proposition 2.19:** Just before the last sentence of that paragraph, insert “(Continuity of the restriction of a function to an open subset is understood to be with respect to the topology described in Exercise 2.5.)”

(3/8/16) **Page 27, last line:** Change two occurrences of \(x \) to \(y \) in the displayed equation, so it reads

\[
(f|_{V_y})^{-1}(U) = \{ y \in V_x : f(y) \in U \} = f^{-1}(U) \cap V_x.
\]

(9/26/19) **Page 31, second paragraph below the section heading, second sentence:** Change “two points” to “two distinct points.”

(6/24/19) **Page 32, just above Exercise 2.38:** Insert the following sentence: “In view of the preceding proposition, in a Hausdorff space we can write \(p = \lim_{i \to \infty} p_i \) as an alternative notation for \(p_i \to p \).”

(5/17/12) **Page 37, three lines from the bottom:** Change “Exercise 2.49” to “Example 2.49.”

(11/26/15) **Page 53, part (c) of the proposition continued from the previous page:** Insert another “if” after “if and only.”

(7/14/18) **Page 58, second display:** Replace \(k \) by \(k/2 \) (twice) and \(l \) by \(l/2 \) (twice). [The tangent and cotangent functions have period \(\pi \), not \(2\pi \).]

(9/26/19) **Page 60, last paragraph:** In this paragraph and in the first one on page 61, change all subscript \(k \)’s to \(n \)’s (a total of four times).

(9/26/19) **Page 61, Proposition 3.31, part (c):** Change \(X_k \) to \(X_n \).

(11/20/19) **Page 66, after the second line:** Add the following sentence: “We sometimes also say informally that \(Y \) is a quotient space of \(X \) when \(Y \) is a topological space that has the quotient topology with respect to some continuous map from \(X \) to \(Y \).”

(3/23/12) **Page 67, Example 3.52, second sentence:** Change this sentence to read “Let \(\sim \) be the equivalence relation on \(X \) such that \(a_1 \sim a_2 \) for all \(a_1, a_2 \in A \) and \(a \sim x \) for all other \(x \in X \); the partition”

(5/17/12) **Page 67, Example 3.53, last line:** Change \(\mathbb{B}^n \) to \(\mathbb{B}^{n+1} \).

(7/17/19) **Page 70, Example 3.66, first paragraph, next-to-last line:** Change \(\theta \) to \(\frac{1}{2\pi} \theta \).

(10/7/11) **Page 74, line 5:** Change this statement to read “As a set, \(X \cup fY \) is the disjoint union” [The topology on \(X \cup fY \) is not the disjoint union topology.]

(11/30/19) **Page 75, proof of Theorem 3.79, second line:** Change \(q(\partial M \cup \partial N) \) to \(q(\partial M) \cup \partial N \).

(12/1/19) **Page 75, proof of Theorem 3.79, second paragraph:** Replace that paragraph with the following: “Suppose \(s \in S \), and let \(y_0 \in \partial N \) and \(x_0 = h(y_0) \in \partial M \) be the two points in the fiber \(q^{-1}(s) \). We can choose coordinate charts \((U, \phi) \) for \(M \) and \((V, \psi) \) for \(N \) such that \(x_0 \in U \) and \(y_0 \in V \), and let \(\tilde{U} = \phi(U) \), \(\tilde{V} = \psi(V) \subseteq \mathbb{H}^n \) (Fig. 3.13). It is useful in this proof to identify \(\mathbb{H}^n \) with \(\mathbb{R}^{n-1} \times [0, \infty) \) and \(\mathbb{R}^n \) with \(\mathbb{R}^{n-1} \times \mathbb{R} \). By shrinking \(U \) and \(V \) if necessary, we may assume that \(h(V \cap \partial N) = U \cap \partial M \). Then we can write the coordinate maps as \(\phi(p) = (\phi_0(p), \phi_1(p)) \) and \(\psi(p) = (\psi_0(p), \psi_1(p)) \) for some continuous maps \(\phi_0: U \to \mathbb{R}^{n-1} \), \(\phi_1: U \to [0, \infty) \), \(\psi_0: V \to \mathbb{R}^{n-1} \), \(\psi_1: V \to [0, \infty) \). Our assumption that \(x_0 \) and \(y_0 \) are boundary points means that \(\phi_1(x_0) = \psi_1(y_0) = 0 \), and there are open subsets \(U_0, V_0 \subseteq \mathbb{R}^{n-1} \) such that \(\phi_0(U \cap \partial M) = U_0 \), \(\psi_0(V \cap \partial M) = V_0 \). (Here we are again using the theorem on invariance of the boundary.) After replacing \(U \) and \(V \) by the preimages.
of $U_0 \times [0, \infty)$ and $V_0 \times [0, \infty)$, respectively, we can also assume that $\hat{U} \subseteq U_0 \times [0, \infty)$ and $\hat{V} \subseteq V_0 \times [0, \infty)$.

(6/18/19) Page 76, display in the middle of the page: Change y^m to y_n (twice).

(7/16/11) Page 76, last paragraph of the proof of Theorem 3.79: In the second line of the paragraph, change “embedding of N” to “embedding of M.” In the fourth line, change “embedding of M” to “embedding of N.”

(8/23/11) Page 87, Exercise 4.4: Insert another “if” after “if and only.”

(8/23/11) Page 88, proof of Proposition 4.9, fourth paragraph: In the first sentence of the paragraph, change “open subsets of $\bigcup_{\alpha \in A} B_\alpha$” to “open subsets of X whose union contains $\bigcup_{\alpha \in A} B_\alpha$.”

(8/23/11) Page 97, line 10: Change $B_{n_{\max}}(a)$ to $B_{n_{\max}}(x)$.

(3/9/11) Page 98, line 3 from the bottom: Change “this proposition” to “this lemma.”

(6/21/20) Page 99, second paragraph: Delete the second sentence of the paragraph. [It’s not wrong; it’s just not needed.]

(6/21/20) Page 103, just above Exercise 4.58: After the word “illustrates,” insert “(using the theorem on invariance of the boundary).”

(11/11/13) Page 104, proof of Proposition 4.60: At the end of the first paragraph, change $B_{r(x)}(x) \subseteq \hat{U}_i$ to $B_{2r(x)}(x) \subseteq \hat{U}_i$. [Without this change, it might not be the case that B covers M.]

(6/21/20) Page 106, proof of Theorem 4.68, last paragraph: After the first sentence of the paragraph, insert: “Begin by setting $W_0 = X$.” Then in the third and fourth lines of the paragraph, replace “Choosing $r_n < \min(\varepsilon_n, 1/n)$” by “Choosing $r_n < \min(\varepsilon_n, 1/n)$ and setting $W_n = B_{r_n}(x_n)$.”

(8/23/11) Page 106, line 3 from the bottom: Change “countable union” to “countable intersection.”

(8/23/11) Page 109, statement of Lemma 4.74: Insert another “if” after “if and only.”

(7/19/15) Page 110, next-to-last line: Change M to X.

(8/23/11) Page 114, proof of Corollary 4.83: This proof is incorrect. Replace it with the following: “Given a closed subset $A \subseteq X$ and a neighborhood U of A, Lemma 4.80 shows that there is a neighborhood V of A such that $V \subseteq U$. By Urysohn’s lemma, there exists a continuous function $f : X \to [0, 1]$ such that $f \equiv 1$ on A and $f \equiv 0$ on $X \setminus V$. This function satisfies $\text{supp } f \subseteq \overline{V} \subseteq U$, so it is the bump function we seek.”

(6/17/19) Page 119, statement of Proposition 4.93(b): Add the hypothesis that Y is Hausdorff.

(10/24/19) Page 119, proof of Proposition 4.93, second paragraph: Change the first sentence to read “To prove (b), assume X is a second countable Hausdorff space and Y is Hausdorff, and suppose …” Then replace the sentence beginning “Suppose on the contrary” by the following: “Suppose on the contrary that (x_i) is a sequence in L with no convergent subsequence in L. Because Y is Hausdorff, K is closed and therefore so is L, which means that (x_i) has no convergent subsequence in X.”

(8/23/11) Page 121, proof of Lemma 4.94: Replace the last two sentences of the proof with the following: “Thus x lies in the closure of $A \cap K$ in K. Because $A \cap K$ is closed in K, it follows that $x \in A \cap K \subseteq A$.”

(8/23/11) Page 123, Problem 4.15(d): Change “every connected neighborhood” to “every neighborhood.”

(9/16/11) Page 126, Problem 4.30: Change $\{A_\alpha\}$ to $\{X_\alpha\}_{\alpha \in A}$.

(4/12/20) Page 126, Problem 4.31(c): In the last sentence, change “every element of \mathcal{U}” to “every nonempty element of \mathcal{U}.”

(4/12/20) Page 128, proof of Prop. 5.1: Insert before the first sentence of the proof: “The proposition is true by definition when $n = 0$, so assume that $n > 0$.”

(1/20/11) Page 133, proof of Proposition 5.7: This should refer to Problem 5.8, not 5.7.

(5/17/12) Page 136, four lines below the displayed equations: Change “both X'_n and X''_n are open” to “both X'_n and X''_n are open.”

(1/20/11) Page 137, statement of Lemma 5.13: Change “discrete” to “closed and discrete.”
(1/20/11) Page 137, proof of Lemma 5.13, first paragraph: In line 1, change “discrete” to “closed and discrete”; and in line 2, change “discrete subset” to “closed discrete subset.”

(1/20/11) Page 137, proof of Theorem 5.14, second paragraph: Change “infinite discrete subset” to “infinite closed discrete subset.”

(7/17/19) Page 140, displayed formulas: In both displayed formulas, change \mathbb{R} to $[0, 1]$.

(4/12/20) Page 141, just above the displayed equation: In the line above the display and in the display itself, change A to B (four times), to avoid conflict with the use of A as the index set for the open cover.

(4/12/20) Page 141, displayed equation: Change D^*_n+1 to $D^*_n \setminus \{0\}$.

(9/16/11) Page 141, line 5 from the bottom: Change \tilde{U}^{n+1}_α to $\tilde{U}^{n+1}_{\alpha i}$ (twice).

(2/5/13) Page 141, line 4 from the bottom: Change “the minimum” to “one-half the minimum.”

(2/5/13) Page 141, line 3 from the bottom: Change “supported in $\partial D^{n+1}_\gamma (\epsilon/2)$” to “supported in $\partial D^{n+1}_\gamma (\epsilon/2)$”

(7/17/19) Page 143, proof of Proposition 5.24, last paragraph: Change $U \cap e_0$ to $U \cap \bar{e}_0$.

(10/16/20) Page 144, three lines above Lemma 5.26: Change “the finite subcomplex E_n” to “the finite subcomplex M_n.”

(7/24/19) Page 145, second paragraph: Change e_n to e_k twice (once in the first line, and once in (5.1)).

(7/22/19) Page 146, Case 1, second paragraph: Change Y_n to Y_{v_n} (twice).

(4/12/20) Page 152, sentence after the proof of Prop. 5.38: Change $i = 1, \ldots, k$ to $i = 0, \ldots, k$.

(3/24/11) Page 156, Problem 5-4: add the hypothesis that $\dim M > 1$.

(5/27/17) Page 158, second sentence: Replace this sentence by “More generally, suppose K is a finite Euclidean simplicial complex and w is a point in \mathbb{R}^n such that each ray starting at w intersects $|K|$ in at most one point.”

(4/12/20) Page 158, Problem 5-18(b): In the hint, change “simplex” to “cell.”

(11/7/19) Page 165, Example 6.7: After the second sentence, add “(The disks should be chosen so that their closures are disjoint.)”

(4/12/20) Page 167, line 5 from the bottom: Insert “the” before “sum.”

(9/16/11) Page 172, first paragraph, next-to-last line: Change $P'_1 \sqcup Q$ to $P_1 \sqcup Q$.

(9/16/11) Page 176, Fig. 6.21: The label b near the lower right should be c, and the label w near the middle of the right-hand side should be x.

(5/20/18) Page 180, Proposition 6.20: In the statement of the proposition, change “compact surface” to “connected compact surface.” Then in the second sentence of the proof, change both occurrences of “surface” to “connected compact surface.”

(11/5/17) Page 181, first full paragraph: Replace the sentence starting with “However” by “However, we will prove in Chapter 10 that a compact surface cannot have both an oriented presentation and a nonoriented one.”

(2/26/18) Page 181, Problem 6-4: Replace the first sentence by “Suppose M is a compact 2-manifold that contains a subset $B \subseteq M$ that is homeomorphic to the Möbius band, and whose interior is homeomorphic to the Möbius band minus its boundary.”

(9/16/11) Page 190, line 3 from the bottom: Change $\Phi_\xi(f)$ to $\Phi_\xi[f]$.

(1/20/11) Page 193, proof of Proposition 7.16, second paragraph, line 2: Change “$H_1 = f$” to “$H_1 = \tilde{f}$.”

(8/3/18) Page 201, Corollary 7.38: This corollary should be moved after the statement of Theorem 7.40.

(11/25/12) Page 211, line 6: Delete redundant “each.”

(7/9/15) Page 215, Problem 7-9: Change “connected” to “path-connected.”

(5/31/16) Page 221, Theorem 8.4: Remark: This theorem is true without the assumption that B is locally connected, and the proof is not really any more difficult; see, for example, the proof of Theorem 1.7 in [Hat02].

(7/22/19) Page 222, first paragraph: Change $\{J_1, \ldots, J_k\}$ to $\{J_1, \ldots, J_m\}$.

(1/20/11) Page 224, two lines above the subheading: Change $f_0(1)$ to $f_1(0)$.
Page 228, displayed equations (8.4): Replace these equations by
\[
\deg \varphi = \deg (p \varphi \circ \varphi)_*, \\
\deg \psi = \deg (p \psi \circ \psi)_*.
\] (8.4)

Page 230, Problem 8-5: Replace the last sentence of the hint by the following: “Prove that \(p_n \mid S^1 \) and \(p_n(z) = z^n \) are homotopic as maps from \(S^1 \) to \(\mathbb{C} \setminus \{0\} \). If \(p \) has no zeros, use degree theory to derive a contradiction.”

Page 231, Problem 8-10(c): Change “index of \(V \) around the loop \(\omega \)” to “winding number of \(V \) around the loop \(\omega \).”

Page 239, fourth line below the section heading: Change “generated by \(G \)” to “generated by \(S \).”

Page 241, middle of the page: Change the definition of \(\text{group presentation} \) as follows: “We define a \(\text{group presentation} \) to be an ordered pair, denoted by \((S|R) \), where \(S \) is an arbitrary set and \(R \) is a set of words formed from the elements of \(S \).”

Page 241, just below the last displayed equation: Replace “where \(\bar{R} \) is the \(\text{normal closure of} \ R \) in \(F(S) \)” by “where now we interpret \(R \) as a set of elements of the free group \(F(S) \), and \(\bar{R} \) is the \(\text{normal closure of} \ R \) in \(F(S) \).”

Page 244, fourth line below the section heading: Change \(n \in \mathbb{Z} \) to \(n \in \mathbb{N} \).

Page 247, Example 9.22, last line: The formula for \(G_{\text{tot}} \) should be \(G_{\text{tot}} = \{0\} \times \mathbb{Z}/k_1 \times \cdots \times \mathbb{Z}/k_m \).

Page 249, Problem 9-4(b): Change “a subset of the free group \(F(S_i) \)” to “a set of words in the elements of \(S_i \).”

Page 249, Problem 9-5: Change “subsets of the free group \(F(S) \)” to “sets of words in the elements of \(S \).”

Page 252, just above diagram (10.2): Change “the following diagram commutes” to “the right half of the following diagram commutes.”

Page 256, statement of Theorem 10.7: Change “spaces” to “path-connected spaces.”

Page 257, last paragraph, second sentence: Change that sentence to read “If two or more edges are incident with the same two vertices, or if two or more self-loops are incident with the same vertex, they are called \(\text{multiple edges} \).”

Page 263, line 2: Change \(U \cap \bar{V} \) to \(q(D \setminus \{z\}) \).

Page 268, lines 2 & 3: Change “preceding corollary” to “preceding theorem.”

Page 268, statement of Corollary 10.24: Change the statement to “A compact surface cannot have both an oriented presentation and a nonoriented one.”

Page 269, line below equation (10.7): Insert missing comma after “surjective.”

Page 271, line 3: Replace the phrase “the endpoints of the paths \(a_i \) in this product are of the form \(i/n \)” by “the paths \(a_i \) in this product are defined on subintervals whose endpoints are integral multiples of \(1/n \).”

Page 275, Problem 10-21(c): Delete “with nonempty intersection.”

Page 278, second line below the heading: Before “disjoint union,” insert “nonempty.”

Page 279, second line: Change “Theorem 4.15” to “Proposition 4.13.”

Page 282, Theorem 11.13: Remark: This theorem, like Theorem 8.4, is true without the assumption that \(B \) is locally connected.

Page 302, Problem 11-5, first line: Change “dimension \(n \)” to “dimension \(n \geq 2 \).”

Page 303, Problem 11-9: Add the hypothesis that the spaces are nonempty.

Page 303, Problem 11-12(c): Change “\((1,0)\) or \((-1,0)\)” to “1 or \(-1\)” [to be consistent with the complex notation used elsewhere for \(S^1 \)].

Page 305, Problem 11-20: At the end of the problem, add: “For the counterexample, you may use without proof the fact that \(S^2 \) is not contractible. (This follows, for example, from Corollary 13.11 and Theorem 13.23.)”

Page 312, last sentence of the paragraph after Exercise 12.13: Allen Hatcher’s name is misspelled.
Page 315, paragraph above the displayed diagram: After “Q is a normal covering map,” insert “and $\hat{H} = \text{Aut}_Q(E)$.”

Page 315, just below the displayed diagram: Replace the last two paragraphs on page 315 and the first (partial) paragraph on page 316 with the following:

We have to show that q is a covering map. Let $x \in X$ be arbitrary, and let U be a neighborhood of x that is evenly covered by q. We will show that U is also evenly covered by \hat{q}. Given a component U_i of $q^{-1}(U)$, let $\hat{U}_i = Q(U_i) \subseteq \hat{E}$; then \hat{U}_i is connected, and it is open in \hat{E} because Q is an open map (Proposition 11.1). Suppose $\hat{U}_i = Q(U_i)$ and $\hat{U}_j = Q(U_j)$ are any two such sets. If they have a point \hat{e} in common, then $\hat{e} = Q(e_i) = Q(e_j)$ for some $e_i \in U_i$ and $e_j \in U_j$. Since Q identifies points of E if and only if they are in the same \hat{H}-orbit, there is some $e_i \in E$ such that $e_j = e_i \in E$. Then $\phi(U_i) = U_j$ by Proposition 12.1(c), so $Q(U_i) = \phi(U_i) = Q(U_j)$. This shows that any such sets \hat{U}_i, \hat{U}_j are either disjoint or equal. Since Q is surjective, $q^{-1}(U)$ is equal to the disjoint union of the connected open sets \hat{U}_i as U_i ranges over the components of $q^{-1}(U)$.

It remains only to show that for any such set \hat{U}_i, the restricted map $\hat{q} : \hat{U}_i \to U$ is a homeomorphism. The following diagram commutes:

\[
\begin{array}{ccc}
U_i & \xrightarrow{Q} & \hat{U}_i \\
\downarrow & & \downarrow \hat{q} \\
q & & q \\
\end{array}
\]

(12.3)

Since $q = \hat{q} \circ Q$ is injective on U_i, so is Q; and $Q : U_i \to \hat{U}_i$ is surjective by definition. Because Q is an open map, it follows that $Q : U_i \to \hat{U}_i$ is a homeomorphism. Since q and Q are homeomorphisms in (12.3), so is \hat{q}.

Page 318, statement of Proposition 12.21, second line: Insert “on” after “acting.”

Page 320, paragraph after the proof of Prop. 12.24, first line: Before “locally,” insert “nonempty.”

Page 321, line 4: Change $E \times E$ to E.

Page 329, paragraph just below the diagram: Change every occurrence of \bar{p} to \bar{q} (five times).

Page 330, just below the bulleted list: Change \bar{p} to \bar{q}.

Page 332, first full paragraph, second line: Change \bar{p} to \bar{q}.

Page 332, second full paragraph, lines 6 and 7: Change \bar{p} to \bar{q} (twice).

Page 335, Problem 12-10: Interchange the definitions of G and H in the sixth and seventh lines. (Otherwise, part (c) is false as stated.)

Page 337, Problem 12-19: Replace the first sentence of the problem with the following: “Suppose we are given a continuous action of a metrizable topological group (e.g., a discrete group) G on a first countable Hausdorff space E.”

Page 349, line 3: Change Δ_p to Δ_{p+1}.

Page 352, lines 3 and 4: Change c_p to c_q (twice), and change p to q (twice).

Page 352, next-to-last line: Change c_p to c_q (twice), and change p to q (once).

Page 354, paragraph above the last display: Insert “of some reparametrization” after “extension of the circle representative.”

Page 360, proof of Lemma 13.20: In the second line of the displayed equation, change $F_{i,p}$ to $\bar{F}_{i,p+1}$.

Page 361, first line of text: Change “$\in \mathbb{R}^n$” to “$\subseteq \mathbb{R}^n$.”

Page 370, line 5 from the bottom: Change “It follows” to “Assuming X is path-connected, it follows”

Page 371, at the end of the first (partial) paragraph: Insert “If X is not path-connected, just apply this argument to the path component containing the image of φ, and use Proposition 13.5.”
(9/26/17) **Page 371, statement of Theorem 13.34(e):** Change “dimension n” to “dimension $n \geq 2$,” and change “the zero map” to “not injective.”

(9/26/17) **Page 372, proof of Theorem 13.34, last paragraph:** Change “if $\varphi_* = 0$” to “if φ_* is injective.”

(9/26/17) **Page 372, Example 13.35(b), last line:** Change “the zero map” to “noninjective.”

(9/29/17) **Page 372, Example 13.35(c):** Replace the last sentence by “The image of φ_* is the infinite cyclic group generated by $\gamma(a_1^2 \ldots a_n^2)$, so φ_* is injective and $H_2(M) = 0$.”

(9/26/19) **Page 399, next-to-last line:** Change $x \in X$ to $x \in M_1$.

(12/26/18) **Page 401, line 4 from the bottom:** Change “subset” to “nonempty subset.”

(10/7/19) **Page 402, Exercise C.1:** Change “any subset” to “any nonempty subset.”

(6/6/18) **Page 411, near the middle of the page:** The index entry for \overline{R} should read “(normal closure of a subset).”

(2/25/18) **Page 422:** The index entry for “Hatcher, Allen” is misspelled.