(2/25/18) Page xii, last paragraph: Allen Hatcher’s name is misspelled. (Sorry, Allen.)
(2/14/15) Page 23, Exercise 2.6, first line: Change “collection of topologies” to “nonempty collection of topologies.”
(6/24/19) Page 26, just above Exercise 2.12: Replace the last sentence of the paragraph by “Symbolically, this is denoted by $x_i \to x.$”
(6/18/19) Page 27, paragraph before Proposition 2.19: Just before the last sentence of that paragraph, insert “(Continuity of the restriction of a function to an open subset is understood to be with respect to the topology described in Exercise 2.5.)”
(3/8/16) Page 27, last line: Change two occurrences of x to y in the displayed equation, so it reads $f_j^V \cap x_1(U) = f_1(U) \cap V_x.$
(9/26/19) Page 31, second paragraph below the section heading, second sentence: Change “two points” to “two distinct points.”
(6/24/19) Page 32, just above Exercise 2.38: Insert the following sentence: “In view of the preceding proposition, in a Hausdorff space we can write $p = \lim_{i \to \infty} p_i$ as an alternative notation for $p_i \to p.$”
(6/18/19) Page 32, last line: Change two occurrences of x to y in the displayed equation, so it reads $f_j^V \cap x_1(U) = f_1(U) \cap V_x.$
(3/14/24) Page 46, Exercise 2-9: After the first sentence, add “Assume all of the spaces are nonempty.”
(11/26/15) Page 53, part (c) of the proposition continued from the previous page: Insert another “if” after “if and only if.”
(7/14/18) Page 58, second display: Replace k by $k/2$ (twice) and l by $l/2$ (twice). [The tangent and cotangent functions have period π, not 2π.]
(9/26/19) Page 60, last paragraph: In this paragraph and in the first one on page 61, change all subscript k’s to n’s (a total of four times).
(5/17/12) Page 67, Example 3.52, second sentence: Change this sentence to read “Let \sim be the equivalence relation on X such that $a_1 \sim a_2$ for all $a_1, a_2 \in A$ and $x \sim x$ for all other $x \in X$; the partition”
(5/17/12) Page 67, Example 3.53, last line: Change \mathbb{B}^n to $\mathbb{S}^{n+1}.$
(7/17/19) Page 70, Example 3.66, first paragraph, next-to-last line: Change θ to $\frac{1}{2\pi} \theta.$
(10/7/11) Page 74, line 5: Change this statement to read “As a set, $X \cup_f Y$ is the disjoint union” [The topology on $X \cup_f Y$ is not the disjoint union topology.]
(4/1/22) Page 74, Example 3.78(a): Change “topological spaces” to “Hausdorff spaces.”
(6/4/21) Page 75, proof of Theorem 3.79, second line: Change $q(\partial M \cup \partial N)$ to $q(\partial M \cup \partial N).$
(11/30/19) Page 75, proof of Theorem 3.79, second paragraph: Replace that paragraph with the following: “Suppose $x \in S,$ and let $y_0 \in \partial N$ and $x_0 = h(y_0) \in \partial M$ be the two points in the fiber $q^{-1}(x).$ We can choose coordinate charts (U, φ) for M and (V, ψ) for N such that $x_0 \in U$ and $y_0 \in V,$ and let $\bar{U} = \varphi(U),$ $\bar{V} = \psi(V) \subseteq \mathbb{H}^n$ (Fig. 3.13). It is useful in this proof to identify \mathbb{H}^n with $\mathbb{R}^{n-1} \times [0, \infty)$ and \mathbb{R}^n with $\mathbb{R}^{n-1} \times \mathbb{R}.$ By shrinking U and V if necessary, we may assume that $h(V \cap \partial N) = U \cap \partial M.$ Then we can write the coordinate maps as
\[\psi(p) = (\varphi_0(p), \varphi_1(p)) \text{ and } \psi(p) = (\psi_0(p), \psi_1(p)) \text{ for some continuous maps } \varphi_0: U \to \mathbb{R}^{n-1}, \]
\[\varphi_1: U \to [0, \infty), \ \psi_0: V \to \mathbb{R}^{n-1}, \ \psi_1: V \to [0, \infty). \]

Our assumption that \(x_0 \) and \(y_0 \) are boundary points means that \(\varphi_1(x_0) = \psi_1(y_0) = 0 \), and there are open subsets \(U_0, V_0 \subseteq \mathbb{R}^{n-1} \) such that \(\varphi_0(U \cap \partial M) = U_0, \ \psi_0(V \cap \partial N) = V_0. \) (Here we are again using the theorem on invariance of the boundary.) After replacing \(U \) and \(V \) by the preimages of \(U_0 \times [0, \infty) \) and \(V_0 \times [0, \infty), \) respectively, we can also assume that \(\hat{U} \subseteq U_0 \times [0, \infty) \) and \(\hat{V} \subseteq V_0 \times [0, \infty). \)

Page 76, display in the middle of the page: Change \(y^n \) to \(y_n \) (twice).

Page 61, proof of Proposition 3.79: In the second line of the paragraph, change “embedding of \(N \)” to “embedding of \(M \).” In the fourth line, change “embedding of \(M \)” to “embedding of \(N \).”

Page 87, Exercise 4.3: Insert “nonempty” before “connected.”

Page 87, Exercise 4.4: Insert another “if” after “if and only.”

Page 89, line above Proposition 4.9, fourth paragraph: In the first sentence of that paragraph, change “open subsets of \(\bigcup_{a \in A} B_a \)” to “open subsets of \(X \) whose union contains \(\bigcup_{a \in A} B_a \).”

Page 99, line 3 from bottom: Change “this proposition” to “this lemma.”

Page 103, just above Exercise 4.58: After the word “illustistrates,” insert “(using the theorem on invariance of the boundary).”

Page 104, proof of Proposition 4.60: Delete the last sentence in the first paragraph, and in the second paragraph, replace the phrase “\(r \) is any positive rational number strictly less than \(r(x) \)” by “\(r \) is any positive rational number such that \(B_{2r}(x) \subseteq \hat{U}_1 \).”

Page 106, proof of Theorem 4.68, last paragraph: After the first sentence of the paragraph, insert: “Begin by setting \(W_0 = U \).” Then in the third and fourth lines of the paragraph, replace “Choosing \(r_n < \min(\varepsilon_n,1/n) \)” by “Choosing \(r_n < \min(\varepsilon_n,1/n) \)” and setting \(W_n = B_{r_n}(x_n) \).”

Page 110, statement of Lemma 4.74: Insert another “if” after “if and only.”

Page 110, next-to-last line: Change \(M \) to \(X \).

Page 114, proof of Corollary 4.83: This proof is incorrect. Replace it with the following: “Given a closed subset \(A \subseteq X \) and a neighborhood \(U \) of \(A \), Lemma 4.80 shows that there is a neighborhood \(V \) of \(A \) such that \(\overline{V} \subseteq U \). By Urysohn’s lemma, there exists a continuous function \(f: X \to [0,1] \) such that \(f \equiv 1 \) on \(A \) and \(f \equiv 0 \) on \(X \setminus V \). This function satisfies \(\text{supp } f \subseteq \overline{V} \subseteq U \), so it is the bump function we seek.”

Page 116, proof of Theorem 4.88, first paragraph: In the last line of the paragraph, after “does the trick,” insert “if \(B \neq \emptyset \)” Then at the end of the paragraph, add the sentence “If \(B = \emptyset \), let \(u = 1 \).”

Page 119, statement of Proposition 4.93(b): Add the hypothesis that \(Y \) is Hausdorff.

Page 119, proof of Proposition 4.93, second paragraph: Change the first sentence to read “To prove (b), assume \(X \) is a second countable Hausdorff space and \(Y \) is Hausdorff, and suppose ...” Then replace the sentence beginning “Suppose on the contrary” by the following: “Suppose on the contrary that \((x_i) \) is a sequence in \(L \) with no convergent subsequence in \(L \). Because \(Y \) is Hausdorff, \(K \) is closed and therefore so is \(L \), which means that \((x_i) \) has no convergent subsequence in \(X \).”
(8/23/11) Page 121, proof of Lemma 4.94: Replace the last two sentences of the proof with the following: “Thus x lies in the closure of $A \cap K$ in K. Because $A \cap K$ is closed in K, it follows that $x \in A \cap K \subseteq A$.”

(8/23/11) Page 123, Problem 4-15(d): Change “every connected neighborhood” to “every neighborhood.”

(9/16/11) Page 126, Problem 4-30: Change $\{A_\alpha\}$ to $\{X_\alpha\}_{\alpha \in A}$.

(4/12/20) Page 126, Problem 4-31(c): In the last sentence, change “every element of U” to “every nonempty element of U.”

(4/12/20) Page 126, Problem 4-31(c): In the last sentence, change “every element of U” to “every nonempty element of U."

(7/4/22) Page 130, third paragraph, lines 5 and 6: “Homeomorphism” is misspelled.

(3/20/21) Page 133, line above Theorem 5.6: Change “an n-dimensional subcomplex” to “a subcomplex of dimension at most n."

(1/20/11) Page 133, proof of Proposition 5.7: This should refer to Problem 5-8, not 5-7.

(5/17/12) Page 136, four lines below the displayed equations: Change “both X_0^n and X_0^n are open” to “both X_0^n and X_0^n are open."

(7/17/19) Page 140, displayed formulas: In both displayed formulas, change R to $\{0, 1\}$. "

(4/12/20) Page 141, just above the displayed equation: In the line above the display and in the display itself, change A to B (four times), to avoid conflict with the use of A as the index set for the open cover.

(4/12/20) Page 141, displayed equation: Change D_γ^{n+1} to $D_\gamma^{n+1} \sim \{0\}$.

(9/16/11) Page 141, line 5 from the bottom: Change U^{n+1}_α to $\overline{U}^{n+1}_\alpha$ (twice).

(2/5/13) Page 141, line 4 from the bottom: Change “the minimum” to “one-half the minimum.”

(2/5/13) Page 141, line 3 from the bottom: Change “supported in $\partial D_\gamma^{n+1}(\varepsilon/2)$” to “supported in $\partial D_\gamma^{n+1}(\varepsilon/2)$”

(7/17/19) Page 143, proof of Proposition 5.24, last paragraph: Change $U \cap e_0$ to $U \cap \overline{e}_0$.

(10/16/20) Page 144, three lines above Lemma 5.26: Change “the finite subcomplex E_n” to “the finite subcomplex M_n.”

(7/24/19) Page 145, second paragraph: Change e_n to e_k twice (once in the first line, and once in (5.1)).

(7/22/19) Page 146, Case 1, second paragraph: Change Y_n to Y_{e_n} (twice).

(4/12/20) Page 152, sentence after the proof of Prop. 5.38: Change $i = 1, \ldots, k$ to $i = 0, \ldots, k$.

(3/24/11) Page 156, Problem 5-4: add the hypothesis that $\dim M > 1$.

(5/27/17) Page 158, second sentence: Replace this sentence by “More generally, suppose K is a finite Euclidean simplicial complex and w is a point in \mathbb{R}^n such that each ray starting at w intersects $|K|$ in at most one point.”

(4/12/20) Page 158, Problem 5-18(b): In the hint, change “simplex” to “cell.”

(11/7/19) Page 165, Example 6.7: After the second sentence, add “(The disks should be chosen so that their closures are disjoint.)”

(4/12/20) Page 167, line 5 from the bottom: Insert “the” before “sum.”

(9/16/11) Page 172, first paragraph, next-to-last line: Change $P_1 \cup Q$ to $P_1 \cup Q$.

(9/19/23) Page 173, proof of Prop. 6.14, next-to-last line: Change “$W = U \cup V$ is a disconnection of W” to “$W \sim \{v\} = U \cup V$ is a disconnection of $W \sim \{v\}$.”
(9/16/11) Page 176, Fig. 6.21: The label b near the lower right should be c, and the label w near the middle of the right-hand side should be x.

(5/20/18) Page 180, Proposition 6.20: In the statement of the proposition, change “compact surface” to “connected compact surface.” Then in the second sentence of the proof, change both occurrences of “surface” to “connected compact surface.”

(11/5/17) Page 181, first full paragraph: Replace the sentence starting with “However” by “However, we will prove in Chapter 10 that a compact surface cannot have both an oriented presentation and a nonoriented one.”

(2/26/18) Page 181, Problem 6-4: Replace the first sentence by “Suppose M is a compact 2-manifold that contains a subset B ⊆ M that is homeomorphic to the Möbius band, and whose interior is homeomorphic to the Möbius band minus its boundary.”

(9/16/11) Page 190, line 3 from the bottom: Change \(g/ \) to \(g \circ f \).

(5/31/16) Page 221, Theorem 8.4: Remark: This theorem is true without the assumption that \(B \) is locally connected, and the proof is not really any more difficult; see, for example, the proof of Theorem 1.7 in [Hat02].

(7/13/15) Page 230, Problem 8-5: Replace the last sentence of the hint by the following: “Prove that \(p \) has no zeros, use degree theory to derive a contradiction.”

(7/28/16) Page 244, fourth line below the section heading: Change \(n \in \mathbb{Z} \) to \(n \in \mathbb{N} \).

(7/28/16) Page 247, Example 9.22, last line: The formula for \(G_{tor} \) should be \(G_{tor} = \{0\} \times \mathbb{Z}/k_1 \times \cdots \times \mathbb{Z}/k_m \).

(12/3/19) Page 249, Problem 9-4(b): Change “a subset of the free group \(F(S_i) \)” to “a set of words in the elements of \(S_i \).”

(12/3/19) Page 249, Problem 9-5: Change “subsets of the free group \(F(S) \)” to “sets of words in the elements of \(S \).”

(11/28/17) Page 252, just above diagram (10.2): Change “the following diagram commutes” to “the right half of the following diagram commutes.”
It remains only to show that for any such set \hat{U}_i, the restricted map $\hat{q}:\hat{U}_i \to U$ is a homeomorphism. The following diagram commutes:

$$
\begin{array}{c}
U_i \\
\downarrow Q \\
\hat{U}_i \\
\downarrow \hat{q} \\
U.
\end{array}
$$

(12.3)

Since $q = \hat{q} \circ Q$ is injective on U_i, so is Q; and $Q:U_i \to \hat{U}_i$ is surjective by definition. Because Q is an open map, it follows that $Q:U_i \to \hat{U}_i$ is a homeomorphism. Since q and Q are homeomorphisms in (12.3), so is \hat{q}.

(9/27/11) Page 318, statement of Proposition 12.21, second line: Insert “on” after “acting.”

(12/9/19) Page 320, paragraph after the proof of Prop. 12.24, first line: Before “locally,” insert “nonempty.”

(9/23/14) Page 321, line 4: Change E to E.

(9/27/11) Page 329, paragraph just below the diagram: Change every occurrence of \tilde{p} to \tilde{q} (five times).

(6/26/22) Page 329, last paragraph, third sentence: Change “The map $G \times P \to B^2$” to “The map $\tilde{g}:G \times P \to B^2$.”

(9/27/11) Page 330, just below the bulleted list: Change \tilde{p} to \tilde{q}.

(9/27/11) Page 332, first full paragraph, second line: Change \tilde{p} to \tilde{q}.

(9/27/11) Page 332, second full paragraph, lines 6 and 7: Change \tilde{p} to \tilde{q} (twice).

(9/16/14) Page 335, Problem 12-10: Interchange the definitions of G and H in the sixth and seventh lines. (Otherwise, part (c) is false as stated.)

(10/12/14) Page 337, Problem 12-19: Replace the first sentence of the problem with the following: “Suppose we are given a continuous action of a metrizable topological group (e.g., a discrete group) G on a first countable Hausdorff space E.”

(7/22/19) Page 349, line 3: Change Δ_p to Δ_{p+1}.

(9/27/11) Page 352, lines 3 and 4: Change c_p to c_q (twice), and change p to q (twice).

(7/22/19) Page 352, second-to-last paragraph, lines 6 and 7: Change \tilde{p} to \tilde{q} (twice).

(12/15/17) Page 354, paragraph above the last display: Insert “of some reparametrisation” after “extension of the circle representative.”

(3/16/21) Page 355, commutative diagram near the bottom of the page: Change the period after X to a comma.

(7/22/19) Page 360, proof of Lemma 13.20: In the second line of the displayed equation, change $F_{i,p}$ to $F_{i,p+1}$.

(7/22/19) Page 361, first line of text: Change “$\in \mathbb{R}^n$” to “$\subseteq \mathbb{R}^n$.”

(4/1/21) Page 369, line above Proposition 13.33: Delete spurious “and.”

(10/8/15) Page 370, line 5 from the bottom: Change “It follows …” to “Assuming X is path-connected, it follows …”

(10/8/15) Page 371, at the end of the first (partial) paragraph: Insert “If X is not path-connected, just apply this argument to the path component containing the image of φ, and use Proposition 13.5.”

(9/26/17) Page 371, statement of Theorem 13.34(e): Change “dimension n” to “dimension $n \geq 2$,” and change “the zero map” to “not injective.”

(9/26/17) Page 372, proof of Theorem 13.34, last paragraph: Change “if $\varphi_* = 0$” to “if φ_* is injective.”

(9/26/17) Page 372, Example 13.35(b), last line: Change “the zero map” to “noninjective.”

(9/29/17) Page 372, Example 13.35(c): Replace the last sentence by “The image of φ_* is the infinite cyclic group generated by $\gamma(a_1^2 \ldots a_n^2)$, so φ_* is injective and $H_2(M) = 0$.”
(4/7/24) Page 394, line 4: Delete “nonempty.”
(3/14/24) Page 398, Exercise B.11: Change “metric space” to “nonempty metric space.”
(9/26/19) Page 399, next-to-last line: Change $x \in X$ to $x \in M_1$.
(12/26/18) Page 401, line 4 from the bottom: Change “subset” to “nonempty subset.”
(10/7/19) Page 402, Exercise C.1: Change “any subset” to “any nonempty subset.”
(6/6/18) Page 411, near the middle of the page: The index entry for R should read “(normal closure of a subset).”
(2/25/18) Page 422: The index entry for “Hatcher, Allen” is misspelled.