CORRECTIONS TO
Introduction to Smooth Manifolds (Second Edition)
BY JOHN M. LEE
SEPTEMBER 15, 2023

(8/16) Page 6, just below the last displayed equation: Change \(\varphi([x]) \) to \(\varphi_{n+1}[x] \), and in the next line, change \(x^i \) to \(x^{n+1} \). After “(Fig. 1.4),” insert “with similar interpretations for the other charts.”

(8/16) Page 7, Fig. 1.4: Both occurrences of \(x^i \) should be \(x^{n+1} \).

(12/19/18) Page 9, proof of Theorem 1.15: In the second line of the proof, replace “For each \(j \)” with “For each \(j \geq 0 \).” Then in the fourth-to-last line, replace “positive integers” by “nonnegative integers.”

(1/15/21) Page 13, line 1: Delete the words “and injective.”

(1/18/21) Page 20, Example 1.31: There are multiple errors in this example. Replace everything after the first two sentences by the following: For each \(i = 1, \ldots, n+1 \), let \((U_i^\pm \cap S^n, \varphi_i^\pm) \) denote the graph coordinate charts we constructed in Example 1.4. For any distinct indices \(i \) and \(j \) and any choices of \(\pm \) signs, the transition maps \(\varphi_i^+ \circ (\varphi_j^-)^{-1} \) and \(\varphi_i^- \circ (\varphi_j^+)^{-1} \) are easily computed. For example, in the case \(i < j \), we get the following formula for all \(u \) in the domain of \(\varphi_i^+ \circ (\varphi_j^+)^{-1} \):

\[
\varphi_i^+ \circ (\varphi_j^+)^{-1}(u^1, \ldots, u^n) = (u^1, \ldots, \hat{u}^i, \ldots, u^n, \sqrt{1 - |u^i|^2}, \ldots, u^n)
\]

(with \(u^i \) omitted and the square root replacing \(u^i \)), and similar formulas hold in the other cases. When \(i = j \), the domains of \(\varphi_i^+ \) and \(\varphi_i^- \) are disjoint, so there is nothing to check. Thus, the collection of charts \(\{(U_i^\pm \cap S^n, \varphi_i^\pm)\} \) is a smooth atlas, and so defines a smooth structure on \(S^n \). We call this its standard smooth structure.

(6/23/13) Page 23, two lines below the first displayed equation: Change “any subspace \(S \subseteq V \)” to “any \(k \)-dimensional subspace \(S \subseteq V \)”.

(9/15/19) Page 24, first full paragraph, fourth line: Change “any subspace \(S \)” to “any \(k \)-dimensional subspace \(S \).”

(12/19/18) Page 26, first line: Change \(U \cap \varphi^{-1}(\text{Int } \mathbb{H}^n) \) to \(\varphi^{-1}(\text{Int } \mathbb{H}^n) \).

(12/19/18) Page 27, last paragraph, sixth line: Change \(\bar{U} \cap \mathbb{H}^n \) to \(\bar{U} \cap U \).

(2/22/15) Page 29, proof of Theorem 1.46, second paragraph, line 4: Change \(\varphi(U \cap V) \to \psi(U \cap V) \).

(10/8/15) Page 30, Problem 1-6: Interpret the formula for \(F_s \) to mean \(F_s(0) = 0 \) when \(s \leq 1 \).

(1/27/18) Page 31, Fig. 1.13: Change \(\{x^n = 0\} \) to \(\{x^{n+1} = 0\} \).

(3/12/18) Page 31, Problem 11, next-to-last line: Change \(S^n \) to \(S^n \setminus \{N\} \).

(4/25/17) Page 45, second paragraph: Replace the last sentence of that paragraph with the following: “If \(N \) has empty boundary, we say that a map \(F : A \to N \) is smooth on \(A \) if it has a smooth extension in a neighborhood of each point: that is, if for every \(p \in A \) there exist an open subset \(W \subseteq M \) containing \(p \) and a smooth map \(\tilde{F} : W \to N \) whose restriction to \(W \cap A \) agrees with \(F \). When \(\partial N \neq \emptyset \), we say \(F : A \to N \) is smooth on \(A \) if for every \(p \in A \) there exist an open subset \(W \subseteq M \) containing \(p \) and a smooth chart \((V, \psi) \) for \(N \) whose domain contains \(F(p) \), such that \(F(W \cap A) \subseteq V \) and \(\psi \circ F|_{W \cap A} \) is smooth as a map into \(\mathbb{R}^n \) in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point).”

(7/23/14) Page 45, last displayed equation: The first = sign should be \(\subseteq \).

(9/15/19) Page 46, line 9: Change “on an open subset” to “on a nonempty open subset.”
Page 47, proof of Theorem 2.29, second paragraph: Replace the first sentence of the paragraph by “Let $h: \mathbb{R}^n \rightarrow \mathbb{R}$ be a smooth bump function that is positive in $B_1(0)$ and zero elsewhere.”

Page 49, Problem 2-10(c): Change “an isomorphism” to “a bijection.”

Page 54, just after the first sentence: Insert “(The integral is a smooth function of x by iterative application of Theorem C.14.)”

Page 56, first displayed equation: Change $d(v)_p$ to $d_p(v)$.

Page 56, just below the last displayed equation: Replace “the last two equalities follow” by “the last equality follows.”

Page 58, proof of Lemma 3.11, next-to-last line: Change \mathbb{H}^n to $\text{Int} \mathbb{H}^n$.

Page 68, proof of Proposition 3.21: Insert the following sentence at the beginning of the proof: “Let $n = \dim M$ and $m = \dim N$.” Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change F^n to F^m (twice).

Page 70, two lines above Corollary 3.25: Change “Proposition 3.23” to “Proposition 3.24.”

Page 76, Problem 3-8: Add the following remark: “(For $p \in \partial M$, we need to allow curves with domain $[0, \varepsilon)$ or $(-\varepsilon, 0]$ and to interpret the derivatives as one-sided derivatives.)”

Page 78, proof of Prop. 4.1, third and fourth lines: Change $m \times n$ to $n \times m$ (twice).

Page 79, proof of Theorem 4.5, fourth line: Change $\tilde{F}(p)$ to $\tilde{F}(0)$.

Page 82, line 4 from the bottom: Change “This is a diffeomorphism onto its image” to “This is an open map and a diffeomorphism onto its image.”

Page 83, proof of Theorem 4.14, line 8: Change “no open subset” to “no nonempty open subset.”

Page 96, Problem 4-3: This problem probably needs a better hint. First, to get a good result, you’ll have to add the assumption that $\ker dF_p \subsetneq T_p \partial M$. After choosing smooth coordinates, you can assume $M \subset \mathbb{H}^m$ and $N \subset \mathbb{R}^n$, and extend F to a smooth function \tilde{F} on an open subset of \mathbb{R}^m. If $\text{rank } F = r$, show that there is a coordinate projection $\pi: \mathbb{R}^n \rightarrow \mathbb{R}^r$ such that $\pi \circ \tilde{F}$ is a submersion, and apply the rank theorem to $\pi \circ \tilde{F}$ to find new coordinates in which \tilde{F} has a coordinate representation of the form $\tilde{F}(x, y) = (x, R(x, y))$. Then use the rank condition to show that $R|_M$ is independent of y.

Page 100, first sentence: At the end of the sentence, change “smooth embeddings” to “smooth embeddings of smooth manifolds.”

Page 100, proof of Proposition 5.4, next-to-last line: Change “It a homeomorphism” to “It is a homeomorphism.”

Page 104, line below the proof of Theorem 5.11: Change “See Theorem 5.31” to “See Problem 5-24.” [Problem 5-24 is a new problem, described later in this list. Theorem 5.31 is not appropriate in this situation because it applies only to manifolds without boundary.]

Page 105, line 4 from the bottom: Change F to Φ.

Page 112, Fig. 5.10: Interchange the labels M and N on the figure, to be consistent with the notation in Theorem 5.29.
Page 131, line 6: Change the definition of $\tilde{\psi}$ to $\tilde{\psi} = \pi \circ \psi|_{V_0}$. After the end of that sentence, insert the following: “To see that $\tilde{\psi}$ is a smooth coordinate map, let $i: V \hookrightarrow M$ be the inclusion map. Note first that for each $q \in V_0$, x^{k+1}, \ldots, x^n are all constant on the image of i, so the image of $d_i q$ is contained in the span of $\partial / \partial x^1, \ldots, \partial / \partial x^k$. Since $d_i q$ is injective and its image has trivial intersection with $\text{Ker} d \tilde{\psi}_q$, it follows that $d \tilde{\psi}_q \circ d_i q$ is injective, so for dimensional reasons it is an isomorphism. Thus $\tilde{\psi} \circ i$ is a local diffeomorphism by the inverse function theorem. Since it is bijective from V_0 to its image, it is a diffeomorphism and hence a smooth coordinate map for V.”

Page 119, third line: Starting in the middle of that line, replace the rest of the proof with the following: “In the H case, extend F to a smooth map on an open subset of \mathbb{R}^m, and replace U by that open subset; if we can show that the set of critical values of the extended map has measure zero, then the same is true of the set of critical values of F.”

Page 129, displayed equation near the bottom of the page: Change “ith partial derivatives” to “ith-order partial derivatives.”

Page 130, just below equation (6.2): Right after the displayed equation, insert “(where the component functions F^2, \ldots, F^n might be different from the ones in the original coordinate chart).”

Page 131, two lines below the first displayed equation: Change $A'(R/K)^{k+1}$ to $A'(R\sqrt{m}/K)^{k+1}$.

Page 131, three lines below the first displayed equation: Insert “at most” before “K^m balls.”

Page 131, second displayed equation: Change the left-hand side to $K^m(A')^n(R\sqrt{m}/K)^{n(k+1)}$, and in the next line, change the definition of A'' to $A'' = (A')^n(R\sqrt{m})^{n(k+1)}$.

Page 132, proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \emptyset$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \text{Int} M) \setminus \Delta_M$ and to $(M \times \partial M) \setminus \Delta_M$ (both of which are smooth manifolds with boundary), and note that there is a point $[v] \in \mathbb{R}P^{N-1}$ that is not in the image of τ or either of these restrictions of κ. [Thanks to David Iglesias Ponte for suggesting this correction.]
In case M is an arbitrary compact subset of a larger manifold zM with or without boundary, we can adapt this argument to obtain an embedding of a neighborhood of M into \mathbb{R}^{nm+m}. After covering M with finitely many regular coordinate balls or half-balls for zM, the argument above produces an injective immersion $F : \bigcup_i B_i \to \mathbb{R}^{nm+m}$, which is an embedding because its domain is compact; the restriction of this map to the union of the sets B_i is the desired embedding. [This is needed in the ensuing argument for the noncompact case, because the sets E_i might not be regular domains when $\partial M \neq \emptyset$.]

Page 134, displayed equations two-thirds of the way down the page: In the definition of E_i, there’s an “$i – 1$” that should be “$i – i$.” It should read $E_i = f^{-1}([b_{i-1}, a_{i+1}])$.

Page 134, just below the displayed equations two-thirds of the way down the page: Delete the sentence “By Proposition 5.47, each E_i is a compact regular domain.” Two lines below that, replace “smooth embedding of E_i” with “smooth embedding of a neighborhood of E_i.”

Page 137, first paragraph under the subheading “Tubular Neighborhoods,” fifth line: Change R^n to \mathbb{R}^n.

Page 138, proof of Theorem 6.23, end of the first paragraph: Change “standard coordinate frame” to “standard coordinate basis.”

Page 145, statement of Corollary 6.33: After “immersed submanifold,” insert “with $\dim S = \dim M$.”

Page 145, paragraph above Prop. 6.34: In the definition of smooth family of maps, replace “$F : M \times S \to N$” by “$F : N \times S \to M$.”

Page 146, equation (6.9): Should read $dF(T_{(p,s)}W) \subseteq T_qX$. [Change the equal sign to subset.]

Page 146, line below the last displayed equation: Change “$= T_qX$” to “$\subseteq T_qX$.”

Page 148, Problem 6-13: Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F' is an embedding, but then it’s essentially just a restatement of part (b).]

Page 150, last line: Change “Theorem 20.16” to “Theorem 20.22.”

Page 160, first line: Change $R_{hh^{-1}}$ to $R_{h^{-1}h}$.

Page 164, just above the subheading: Replace the last line of the proof of Prop. 7.23 by “The action is smooth because each φ can be written locally as a composition of a smooth local section followed by π.”

Page 169, first line: Change \tilde{G} to G.

Page 169, statement of Theorem 7.35: Replace the phrase “closed Lie subgroups such that N is normal” by “Lie subgroups such that N is normal and closed.” [In fact, using the result of Theorem 19.25 later in the book, the hypothesis that N is closed can also be omitted.]

Page 171, third line from the end of the proof: Change E_i to E_j, so the formula reads $\rho_j^i(g) = \pi^t(g \cdot E_j)$.

Page 173, Problem 7-21: Replace the first sentence by “Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if n is odd, and in cases (b) and (d) if and only if $n = 1$."

Page 178, Example 8.10(d): Change “Example 8.4” to “Example 8.5.”

Page 179, statement of Lemma 8.13: Change “local frame for $T \mathbb{R}^n$” to “local frame for \mathbb{R}^n.”

Page 184, Example 8.20, next-to-last line: Change $p = (u, v)$ to $q = (u, v)$.
Page 196, proof of Proposition 8.45, next-to-last line: Should read “\(F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \text{Id}_{\text{Lie}(H)} \) and \((F^{-1})_* \circ F_* = \text{Id}_{\text{Lie}(G)} \)”.

Page 208, first line: Change to “This is just the existence and smoothness statements of Theorem D.1”

Page 213, first sentence of the last paragraph: The definition of \(t_0 \) should be \(t_0 = \sup \{ t \in \mathbb{R} : (t, p_0) \in W \} \).

Page 214, Fig. 9.6: The shaded area should be labeled \(W \), not \(D \).

Page 217, Fig. 9.7: Both occurrences of \(\phi \) should be \(\Phi \).

Page 219, second displayed equation: Change “\(V/ (0, p) = 0^+ \)” to “\(\Phi/(0, p) = 0^+ \)”.

Page 222, just below the section heading: Insert the following sentence: “On a manifold with boundary, the definitions of flow domain, flow, and infinitesimal generator of a flow are exactly the same as on a manifold without boundary.”

Page 223, line 2: Change \(\delta : M \to \mathbb{R}^+ \) to \(\delta : \partial M \to \mathbb{R}^+ \).

Page 223, proof of Theorem 9.26: There’s a gap in this proof, because it is not necessarily the case that \(M(a) \) is a regular domain in \(\text{Int} M \). To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:

“Theorem 9.25 shows that \(\partial M \) has a collar neighborhood \(C_0 \) in \(M \), which is the image of a smooth embedding \(E_0 : [0,1) \times \partial M \to M \) satisfying \(E_0(0,x) = x \) for all \(x \in \partial M \). Let \(f : M \to \mathbb{R}^+ \) be a smooth positive exhaustion function. Note that \(W = \{ (t,x) : f(E_0(t,x)) > f(x) - 1 \} \) is an open subset of \([0,1) \times \partial M\) containing \([0) \times \partial M\). Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function \(\delta : \partial M \to \mathbb{R} \) such that \((t,x) \in W \) whenever \(0 \leq t < \delta(x) \). Define \(E : [0,1) \times \partial M \to M \) by \(E(t,x) = E_0(t \delta(x),x) \). Then \(E \) is a diffeomorphism onto a collar neighborhood \(C \) of \(\partial M \), and by construction \(f(E(t,x)) > f(x) - 1 \) for all \((t,x) \in [0,1) \times \partial M \). We will show that for each \(a \in (0,1) \), the set \(E([0,a] \times \partial M) \) is closed in \(M \). Suppose \(p \) is a boundary point of \(E([0,a] \times \partial M) \) in \(M \); then there is a sequence \(\{ (t_i, x_i) \} \) in \([0,1] \times \partial M \) such that \(E(t_i, x_i) \to p \) in \(M \). Then \(f(E(t_i, x_i)) \) remains bounded, and thus \(f(x_i) < f(E(t_i, x_i)) + 1 \) also remains bounded. Since \(\partial M \) is closed in \(M \), \(f|\partial M \) is also an exhaustion function, and therefore the sequence \(\{ x_i \} \) lies in some compact subset of \(\partial M \). Passing to a subsequence, we may assume \((t_i, x_i) \to (t_0, x_0) \), and therefore \(p = E(t_0, x_0) \in E([0,a] \times \partial M) \).

Then at the end of the first paragraph of the proof, add the following sentences:

“To see that \(M(a) \) is a regular domain, note first that it is closed in \(M \) because it is the complement of the open set \(C(a) \). Let \(p \in M(a) \) be arbitrary. If \(p \notin E([0,1] \times \partial M) \), then \(p \) has a neighborhood in \(\text{Int} M \) contained in \(M(a) \) by the argument above. If \(p \in E([0,1] \times \partial M) \), then \(p = E(a,x) \) for some \(x \in \partial M \), and \(C \) is a neighborhood of \(p \) in which \(M(a) \cap C \) is the diffeomorphic image of \([a,1) \times \partial M \).”

Page 223, proof of Theorem 9.26, last line of the first paragraph: Change \(0 \leq t < a \) to \(0 \leq s < a \).

Page 225, Example 9.31: At the end of the example, insert the sentence “If \(n \geq 2 \), then \(M_1 \# M_2 \) is connected.”

Page 226, Example 9.32, fifth line: Replace the sentence beginning “It is a smooth manifold without boundary” by “It is a topological manifold without boundary, and can be given a smooth structure such that each of the natural maps \(M \to D(M) \) (induced by inclusion into the left and right summands of the disjoint union) is a smooth embedding.”
Page 230, line 1 and first displayed equation: Change \(\theta_1(x) \) to \(\theta_1(u) \) (twice).

Page 230, second paragraph: “from Case” should be “from Case 1.”

Page 230, fourth paragraph, last line: Change \([X, Y] \) to \([V, W] \).

Page 234, proof of Theorem 9.46, second paragraph: Replace the two parenthesized sentences by the following: “To see this, just choose \(\varepsilon_1 > 0 \) and \(U_1 \subseteq U \) such that \(\theta_1 \) maps \((-\varepsilon_1, \varepsilon_1) \times U_1 \) into \(U \), and then inductively choose \(\varepsilon_i \) and \(U_i \) such that \(\theta_i \) maps \((-\varepsilon_i, \varepsilon_i) \times U_i \) into \(U_{i-1} \). Taking \(\varepsilon = \min \{\varepsilon_i\} \) and \(Y = U_k \) does the trick.”

Page 241, Example 10.8, statement of Proposition 10.25, first line: Change “basis for” to “basis for homomorphisms.”

Page 241, Example 10.8, lines 6–8: Delete the second sentence of the hint. [Because \(N \) is inward-pointing along \(\partial M \), no integral curve that starts on \(\partial M \) can hit the boundary again, because the vector field would have to be tangent to \(\partial M \) or outward-pointing at the first such point.]

Page 248, first displayed equation: Should read

\[
V(t, p) = \left. \frac{\partial}{\partial s} \right|_{s=t} H_s(H_t^{-1}(p)).
\]

Page 248, Problem 9-22(c): Replace the problem statement by

(c) \(\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = -y \), \(u(0, y) = 0 \).

[Without this sign change, the third claim in Problem 9-23 is not true.]

Page 254, paragraph beginning “With respect to,” third line: Replace \(V_p \times \mathbb{R}^k \) with \(U_a \times \mathbb{R}^k \).

Page 255, Example 10.8, line 5: Replace the phrase “a bijective map \(\Phi|_U : (\pi|_S)^{-1} (U \cap S) \to (U \cap S) \times \mathbb{R}^k \)” with “a bijective map from \((\pi|_S)^{-1} (U \cap S)\) to \((U \cap S) \times \mathbb{R}^k \).” [The notation \(\Phi|_U \) is inappropriate here.]

Page 255, Example 10.8, lines 6–8: Replace the sentence beginning with “If \(E \) is a smooth vector bundle” by the following: “If \(E \) is a smooth vector bundle and \(S \subseteq M \) is an embedded submanifold, it follows easily from the chart lemma that \(E|_S \) is a smooth vector bundle. If \(S \) is merely immersed, we give \(E|_S \) a topology and smooth structure making it into a smooth rank-\(k \) vector bundle over \(S \) as follows: For each \(p \in S \), choose a neighborhood \(U \) of \(p \) in \(M \) over which there is a local trivialization \(\Phi \) of \(E \), and a neighborhood \(V \) of \(p \) in \(S \) that is embedded in \(M \) and contained in \(U \). Then the restriction of \(\Phi \) to \(\pi^{-1}(V) \) is a bijection from \(\pi^{-1}(V) \) to \(V \times \mathbb{R}^k \), and we can apply the chart lemma to these bijections to yield the desired structure.”

Page 255, Example 10.8, last line: Change “over \(M \)” to “over \(S \).”

Page 260, two lines above Proposition 10.22: Change \(\tau^n(p) \) to \(\tau^k(p) \).

Page 261, statement of Proposition 10.25, first line: Change \(\pi' : E \to M' \) to \(\pi' : E' \to M' \).

Page 263, first full paragraph: In the first two lines of the paragraph, change \(\sigma_1, \sigma_2 \) to \(\tau_1, \tau_2 \) (twice).

Page 264, paragraph above the subheading, first sentence: “homomorphism” should be “homomorphisms.”

Page 265, proof of Lemma 10.32, fifth line: Change “basis for \(D_p \) at each point \(p \in U \)” to “basis for \(D_q \) at each point \(q \in U \).”

Page 267, proof of Lemma 10.35, lines 3 & 4: Change “single slice in some coordinate ball or half-ball” to “single slice or half-slice in some coordinate ball.”
Page 271, Problem 10-18: Change “a properly embedded” to “an embedded.”

Page 271, Problem 10-19(d): Add the following: [Hint: For the “only if” direction, to show that F is compact, use a finite number of local trivializations to construct a closed set over which E is trivial.]

Page 276, proof of Proposition 11.9, first line: Change “Theorem 10.4” to “Proposition 10.4.”

Page 278, Example 11.13, third line: Change “every coordinate frame” to “every coordinate coframe.”

Page 296, line 6 from the bottom: Change “closed forms” to “closed covector fields” (twice).

Page 301, Problem 11-10(c): Change S^2 to S^2.

Page 301, Problem 11-13: Add the assumption that n > 0.

Page 303, just below the commutative diagram: Insert this sentence: “A natural transformation is called a natural isomorphism if each map X is an isomorphism in D.”

Page 303, Problem 11-18(b) and (c): Change “natural transformation” to “natural isomorphism” in both parts.

Page 317, paragraph beginning “Any one”: At the end of the paragraph, add this sentence: “If A and B are tensor fields, then A˝B denotes the tensor field defined by .A˝B/ p D A p˝B p .”

Page 317, displayed equation just below the middle of the page: Change A^i_1:::i_k j_1:::i_l to A^i_1:::i_k j_1:::j_l on the third line of the display, and again on the line below the display. [The last lower index should be j_l, not i_l.]

Page 320, statement of Proposition 12.25: Change the domain and codomain of G: It should read G: P ! M.

Page 333, first line: Change U ≤ M to V ≤ M.

Page 345, Problem 13-10: In the last line of the problem statement, change L_x (g) > L_x (g') to L_x (g) ≥ L_x (g'), and delete the phrase “unless g is a reparametrization of g'.” [Because the definition of reparametrization that I’m using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]

Page 356, proof of Lemma 14.10: At the beginning of the proof, insert “Let (E_1, . . . , E_n) be the basis for V dual to (e^i).”

Page 356, Case 4, second line: Should read “brings us back to Case 3.”

Page 368, second paragraph: At the end of the first sentence of the paragraph, insert “(see pp. 341–343).”

Page 368, paragraph below equation (14.25): Change TM to T R^3 (twice).

Page 371, three lines above (14.31): Change that sentence to “The only terms in this sum that can possibly be nonzero are those for which J has no repeated indices and m is equal to one of the indices in J, say m = j_p.”

Page 374, Problem 14-2: Add “[Hint: One way to approach this is to prove first that a k-covector ω is decomposable if and only if the map from R^n to Λ^{k-1}(R^n*) given by v ! v ∧ . ω has (n − k)-dimensional kernel.]”

Page 377, line 4: Change “is a simply” to “is simply.”

Page 382, proof of Proposition 15.6, second paragraph: In the first sentence of the paragraph, after “smooth chart,” insert “with connected domain.”

Page 386, just above Proposition 15.24: After “determines an orientation on ∂M,” insert “if M is oriented.”

Page 388, last paragraph: Change “Proposition 13.6” to “Corollary 13.8.”
(7/20/17) Page 389, Exercise 15.30: Change “a local isometry” to “an orientation-preserving local isometry.”

(5/9/20) Page 397, Problem 15-1: At the end of the last sentence, add “when \(n > 1 \).”

(5/14/20) Page 397, Problem 15-3: Change \(\mathbb{H}^n \) to \(\mathbb{H}^{n+1} \) (twice).

(5/28/22) Page 397, Problem 15-4: Change the first sentence to “Let \(\phi \) be the flow of a smooth vector field on an oriented smooth manifold.” [The stated result is true also for manifolds with boundary and for nonmaximal flows, but to prove it, one must first do a little work to generalize some of the results of Theorem 9.12 to more general flows.]

(4/26/14) Page 402, lines 2–3: There should not be a paragraph break before “and.”

(3/14/16) Page 403, just after the last displayed equation: Add “(In the \(H^n \) case, apply Theorem C.26 to the interiors of \(D \) and \(E \) considered as subsets of \(\mathbb{R}^n \)).”

(5/28/18) Page 409, line 2: Change ‘\(i \)’ to ‘\(\partial \).’

(6/2/16) Page 416, line 3 from the bottom: Change “\(\cdot/\mathcal{D}_p \)” to “\(\cdot/\mathcal{D}_{p/\mathcal{D}} \).”

(9/25/19) Page 418, statement of Proposition 16.21: Delete “compact,” and change “\(n \)-manifold” to “\((n+1) \)-manifold.”

(6/24/18) Page 419, proof of Theorem 16.25, first paragraph: Replace the second and third sentences of the paragraph by the following: “By means of smooth charts and a partition of unity, we may reduce the theorem to the cases in which \(M = \mathbb{R}^n \), \(M = \mathbb{H}^n \), or \(M = \mathbb{R}^n \). The \(\mathbb{R}^n \) and \(\mathbb{H}^n \) cases are treated just as before.”

(9/3/23) Page 423, just above equation (16.11): Change “\(\beta : \mathcal{X}(M) \to \Omega^{n-1}(M) \)” to “\(\beta : T^*M \to \Lambda^{n-1}T^*M \).”

(7/22/15) Page 424, second displayed equation: Change \(\iota^*_S \beta(X) \) to \(\iota^*_M \beta(X) \).

(2/18/13) Page 426, three lines below the section heading: “cam” should be “can.”

(2/11/15) Page 430, Proposition 16.38(c): This statement is wrong. Change it to “If \(F \) is smooth, then \(F^*\mu \) is a continuous density on \(M \); and if \(F \) is a local diffeomorphism, \(F^*\mu \) is smooth.”

(5/31/22) Page 435, Problem 16-4: Change “manifold with boundary” to “manifold with nonempty boundary.”

(7/27/16) Page 439, Problem 16-23: The formula for \(g \) should be

\[
g = \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}.
\]

(2/19/13) Page 444, two lines below equation (17.4): Change \(T_{(q,s)}M \to T_{(q,s)}(M \times \mathbb{R}) \).

(6/6/18) Page 447, Corollary 17.15: Change “every closed form is exact” to “every closed \(p \)-form is exact for \(p \geq 1 \).”

(5/15/15) Page 450, proof of Theorem 17.21, line 5: Change \(H^1_{\text{dr}}(\mathbb{S}^n) \to H^1_{\text{dr}}(\mathbb{S}^1) \).

(8/14/17) Page 451, proof of Corollary 17.25, next-to-last line: Change \(\text{Id}_{H^p_{\text{dr}}(S)} \to \text{Id}_{H^{p-1}_{\text{dr}}(S)} \).

(11/24/17) Pages 455–456, Proof of Theorem 17.32: The proof given in the book is incorrect, because the \(V_i \)’s might not be connected, so Theorem 17.30 does not apply to them. Here’s a corrected proof.

Lemma. If \(M \) is a noncompact connected manifold, there is a countable, locally finite open cover \(\{V_i\}_{i=1}^\infty \) of \(M \) such that each \(V_i \) is connected and precompact, and for each \(j \), there exists \(k > j \) such that \(V_j \cap V_k \neq \emptyset \).
Proof. Let \(\{ W_j \}_{j=1}^{\infty} \) be a countably infinite, locally finite cover of \(M \) by precompact, connected open sets (such a cover exists by Prop. 1.19 and Thm. 1.15). By successively deleting unneeded sets and renumbering, we can ensure that no \(W_j \) is contained in the union of the other \(W_i \)’s.

Let \(Y_1 = \bigcup_{i=2}^{\infty} W_i \). Because \(M \) is connected, each component of \(Y_1 \) meets \(W_1 \), and by local finiteness of \(\{ W_j \} \), there are only finitely many such components. Such a component is precompact in \(M \) if and only if it is a union of finitely many \(W_i \)’s. Let \(V_1 \) be the union of \(W_i \) together with all of the precompact components of \(Y_1 \), and let \(X_1 \) be the union of all \(W_i \)’s not contained in \(V_1 \). Then \(V_1 \) is connected and precompact, and \(X_1 \) has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets \(V_1, \ldots, V_m \) whose union contains \(W_1 \cup \cdots \cup W_m \), and such that the union \(X_m \) of all the \(W_i \)’s not contained in \(V_1 \cup \cdots \cup V_m \) has no precompact components. Let \(j_m \) be the smallest index such that \(W_{j_m} \) is not contained in \(V_1 \cup \cdots \cup V_m \), and let \(Y_{m+1} \) be the union of all \(W_i \)’s other than \(W_{j_m} \) not contained in \(V_1 \cup \cdots \cup V_m \). Any precompact component of \(Y_{m+1} \) must meet \(W_{j_m} \), because otherwise, it would be a precompact component of \(X_m \). Let \(V_{m+1} \) be the union of \(W_{j_m} \) with all of the precompact components of \(Y_{m+1} \). As before, \(V_{m+1} \) is precompact and connected, and the union \(X_{m+1} \) of the \(W_i \)’s not contained in \(V_1 \cup \cdots \cup V_{m+1} \) has no precompact components. Then by construction, for each \(j \), the set \(X_j = \bigcup_{i>j} V_i \) has no precompact components. If some \(V_j \) does not meet \(V_k \) for any \(k > j \), then \(V_j \) itself is a precompact component of \(X_{j-1} \), which is a contradiction. Thus for each \(j \), there is some \(k > j \) such that \(V_j \cap V_k \neq \emptyset \).

Proof of Theorem 17.32. Choose an orientation on \(M \). Let \(\{ V_j \}_{j=1}^{\infty} \) be an open cover of \(M \) satisfying the conclusions of the preceding lemma. For each \(j \), let \(K(j) \) denote the least integer \(k > j \) such that \(V_j \cap V_k \neq \emptyset \), and let \(\theta_j \) be an \(n \)-form compactly supported in \(V_j \cap V_{K(j)} \) whose integral is \(1 \). Let \(\{ \psi_j \}_{j=1}^{\infty} \) be a smooth partition of unity subordinate to \(\{ V_j \}_{j=1}^{\infty} \).

Now suppose \(\omega \) is any \(n \)-form on \(M \), and let \(\omega_j = \psi_j \omega \) for each \(j \). Let \(c_1 = \int_{V_1} \omega_1 \), so that \(\omega_1 - c_1 \theta_1 \) is compactly supported in \(V_1 \) and has zero integral. It follows from Theorem 17.30 that there exists \(\eta_1 \in \Omega_{e}^{n-1}(V_1) \) such that \(d\eta_1 = \omega_1 - c_1 \theta_1 \). Suppose by induction that we have found \(\eta_1, \ldots, \eta_m \) and constants \(c_1, \ldots, c_m \) such that for each \(j = 1, \ldots, m, \eta_j \in \Omega_{e}^{n-1}(V_j) \) and

\[
\frac{d\eta_j}{(\ast)} = \left(\omega_j + \sum_{i : K(i)=j} c_i \theta_i \right) - c_j \theta_j.
\]

Let

\[
c_{j+1} = \int_{V_{j+1}} \left(\omega_{j+1} + \sum_{i : K(i)=j+1} c_i \theta_i \right).
\]

Then by Theorem 17.30, there exists \(\eta_{j+1} \in \Omega_{e}^{n-1}(V_{j+1}) \) satisfying the analog of \((\ast)\) with \(j \) replaced by \(j+1 \). Set \(\eta = \sum_{j=1}^{\infty} \eta_j \), with each \(\eta_j \) extended to be zero on \(M \sim V_j \). By local finiteness, this is a smooth \((n-1)\)-form on \(M \). It satisfies

\[
d\eta = \omega + \sum_{j=1}^{\infty} \left(\sum_{i : K(i)=j} c_i \theta_i \right) - \sum_{j=1}^{\infty} c_j \theta_j.
\]

Each term \(c_i \theta_i \) appears exactly once in the first sum above, so the two sums cancel each other. \(\square \)

(7/27/16) Page 457, line below the second displayed equation: Change “Theorem 17.31” to “Theorem 17.30.”

(7/12/16) Page 463, line above equation (17.15): Insert missing space before “Similarly.”

(7/13/16) Page 464, end of proof of Corollary 17.42: Insert “Note that this construction produces a form \(\sigma \) whose support is contained in \(U \cap V \).” [This might be useful for solving Problem 18-6.]

(7/12/16) Page 471, last paragraph: Replace the sentence starting “The hardest part . . .” with “The hardest part is showing that the singular chain complex of \(M \) can be replaced by a chain complex built out of simplices whose images lie in either \(U \) or \(V \), without changing the homology.”
(9/12/17) Page 487, Problem 18-1, first line: Change “an oriented smooth manifold” to “a smooth manifold.”

(8/8/18) Page 489, Problem 18-7(b): Add to the hint: “In order to use Lemma 17.27, you’ll need to prove the following fact: Every bounded convex open subset of \(\mathbb{R}^n \) is diffeomorphic to \(\mathbb{R}^n \).” To prove this, let \(U \) be such a subset, and without loss of generality assume 0 \(\in U \). First show that there exists a smooth nonnegative function \(f \in C^\infty(U) \) such that \(f(0) = 0 \) and \(f(x) \geq 1/d(x) \) away from a small neighborhood of 0, where \(d(x) \) is the distance from \(x \) to \(\partial U \). Next, show that \(g(x) = 1 + \int_0^1 t^{-1} f(tx) \, dt \) is a smooth positive exhaustion function on \(U \) that is nondecreasing along each ray starting at 0. Finally, show that the map \(F: U \to \mathbb{R}^n \) given by \(F(x) = g(x)x \) is a bijective local diffeomorphism. Also, you may use the fact that the conclusion of the five lemma is still true even if the appropriate diagram commutes only up to sign.”

(1/15/13) Page 491, Example 19.1(c): Delete the word “unit.”

(12/17/15) Page 492, proof of Proposition 19.2, fourth line: Change “Given \(p \in M \)” to “Given \(p \in U \).”

(6/1/20) Page 512, Problem 20-11(b): Here’s a better hint, which doesn’t require proving part (a) first: “[Hint: Consider the graph of \(F \) as a subgroup of \(G \times H \).]”

(10/18/17) Page 542, middle of the paragraph before Example 21.3: Change “the action of \(\mathbb{R}^k \) on \(\mathbb{R}^n \)” to “the action of \(\mathbb{R}^k \) on \(\mathbb{R}^k \times \mathbb{R}^n \).”

(2/25/18) Page 548, last two lines: Allen Hatcher’s name is misspelled. (Sorry, Allen.)
Change the first phrase of that sentence to “Second, if \(p, p' \in E \) are in different orbits and \(\pi(p) \neq \pi(p') \). Then add the following sentences at the end of the proof: “If \(p \) and \(p' \) are in different orbits and \(\pi(p) = \pi(p') \), let \(W \) be an evenly covered neighborhood of \(\pi(p) \), and let \(V, V' \) be the components of \(\pi^{-1}(W) \) containing \(p \) and \(p' \), respectively. For any \(g \in \text{Aut}_\pi(E) \), a simple connectedness argument shows that \(g \cdot V \) is a component of \(\pi^{-1}(W) \); if it had nontrivial intersection with \(V \) it would have to be equal to \(V \), which would imply \(g \cdot p = p' \), a contradiction.”

Insert “a” before “2-covector.”

The coordinates should be \(x^1, \ldots, x^n, y^1, \ldots, y^n \). (The last coordinate is \(y^n \), not \(x^n \).)

Delete the spurious word “theorem” at the end of the line.

Replace the sentence starting “On the other hand” by this: “On the other hand, the left-hand side is just the ordinary \(t \)-derivative of a time-dependent tensor on a fixed vector space, and expanding in terms of a basis shows that it satisfies a similar product rule.”

Change “\(V \wedge W \mathcal{J} M \)” to “\(V \wedge W \mathcal{J} TM \);” and change \(\mathcal{J} \) to \(\mathcal{J} \).

Change \(R^{2n+1} \sim \{0\} \) to \(R^{2n+2} \sim \{0\} \).

Page 583, third displayed equation: Should read
\[
T \mathcal{J} d\Theta = -2 \sum_{i=1}^{n+1} (x^i dx^i + y^i dy^i) = -d(|x|^2 + |y|^2).
\]

Page 583, two lines below the third displayed equation: The formula for \(d\Theta(N, T) \) should be \(d\Theta(N, T) = 2(|x|^2 + |y|^2) \).

Page 584, Exercise 22.29: Part (b) should read
\[
(b) \ T = \frac{\partial}{\partial z};
\]

Page 584, paragraph above Theorem 22.33: Change all occurrences of \(\theta \) in this paragraph to \(\psi \), to avoid confusion with the use of \(\theta \) for a contact form elsewhere in this section.

Page 585, statement of Theorem 22.34, last line: Change \(H \) to \(F \).

Page 587, equation (22.27): Change both occurrences of \(\sigma(s) \) to \(\sigma(x) \).

Page 591, Problem 22.5: Add the hypothesis \(n > 0 \).

Page 592, Problem 22.15: Add the hypothesis that \(M \) is connected.

Page 608, Proposition A.41(a): Insert the following phrase at the beginning of this statement: With the exception of the word “closed” in part (d).

Page 616, Proposition A.77(b), last line: Change \(\tilde{f}(0) \) to \(\tilde{f}_0(0) \).

Page 619, proof of Lemma B.2, fourth line: Replace “By Exercise B.1(b)” with “If \(w_1 \) is equal to one of the \(u_i \)’s, then the ordered \((n + 1) \)-tuple \((u_1, v_1, \ldots, v_n) \) is linearly dependent; if not, then by Exercise B.1(b),”

Page 632, Exercise B.29: Change “by a matrix” to “by a certain matrix” (twice).
(12/19/18) Page 637, Exercise B.42: Delete the words “is a homeomorphism that.” [Checking that it’s a homeomorphism requires the norm topology, which is not defined until later on that page.]

(9/6/16) Page 637, Exercise B.44: Change “basis map” to “basis isomorphism.”

(12/19/18) Page 653, proof of Proposition C.21, second paragraph, second line: Change f to f_D.

(2/25/18) Page 658, two lines above (C.15): Change $B_{\delta}(0)$ to $\overline{B}_{\delta}(0)$.

(2/25/18) Page 660, display (C.20): Change $F^{-1}(x)$ to $F^{-1}(y)$.

(1/18/21) Page 664, statement of Theorem D.1(b): After the phrase “Any two differentiable solutions to (D.3)–(D.4),” insert “defined on intervals containing t_0.”

(12/2/15) Page 666, just below the fifth display: After the sentence ending “by our choice of δ and ϵ,” insert “(If $t < t_0$, interchange t and t_0 in the second line above.)”

(1/18/21) Page 664, statement of Theorem D.4: After the phrase “any two differentiable solutions to (D.3)–(D.4),” insert “defined on intervals containing t_0.”

(1/18/21) Page 668, paragraph below equation (D.10): In the fourth line of the paragraph, change \overline{W} to W.

(1/18/21) Page 670, displayed inequality between (D.17) and (D.18): Change n to n^2.

(1/18/21) Page 670, last line: Change n to n^2 in the definition of B.

(1/18/21) Page 671, inequality (D.19): Change n to n^2 (twice).

(12/15/20) Page 671, just below (D.19): Replace the sentence “Since the expression on the right can be made as small as desired by choosing h and \overline{h} sufficiently small, this shows . . .” by the following: “Thus the expression on the left can be made as small as desired by choosing h and \overline{h} sufficiently small. This shows . . .”

(6/11/19) Page 692: Under the entry for “Form,” delete the references to page 294 for “closed” and page 292 for “exact.”

(2/25/18) Page 693: The index entry for “Hatcher, Allen” is misspelled.