CORRECTIONS TO
Introduction to Smooth Manifolds (Second Edition)
by John M. Lee
October 13, 2021

(8/16) Page 6, just below the last displayed equation: Change \(\varphi([x]) \) to \(\varphi_{n+1}[x] \), and in the next line, change \(x^i \) to \(x^{n+1} \). After “(Fig. 1.4),” insert “with similar interpretations for the other charts.”

(8/16) Page 7, Fig. 1.4: Both occurrences of \(x^i \) should be \(x^{n+1} \).

(12/19/18) Page 9, proof of Theorem 1.15: In the second line of the proof, replace “For each \(j \)” with “For each \(j \geq 0 \)” Then in the fourth-to-last line, replace “positive integers” by “nonnegative integers.”

(1/15/21) Page 13, line 1: Delete the words “and injective.”

(1/18/21) Page 20, Example 1.31: There are multiple errors in this example. Replace everything after the first two sentences by the following: For each \(i = 1, \ldots, n+1 \), let \((U_i^\pm \cap S^n, \varphi_i^\pm) \) denote the graph coordinate charts we constructed in Example 1.4. For any distinct indices \(i \) and \(j \) and any choices of \(\pm \) signs, the transition maps \(\varphi_i^\pm \circ (\varphi_j^\pm)^{-1} \) and \(\varphi_i^\pm \circ (\varphi_j^\mp)^{-1} \) are easily computed. For example, in the case \(i < j \), we get the following formula for all \(u \) in the domain of \(\varphi_i^+ \circ (\varphi_j^+)^{-1} \):

\[
\varphi_i^+ \circ (\varphi_j^+)^{-1}(u^1, \ldots, u^n) = \left(u^1, \ldots, u^i, \sqrt{1-|u|^2}, \ldots, u^n \right)
\]

(with \(u^j \) omitted and the square root replacing \(u^j \)), and similar formulas hold in the other cases. When \(i = j \), the domains of \(\varphi_i^+ \) and \(\varphi_i^- \) are disjoint, so there is nothing to check. Thus, the collection of charts \(\{(U_i^\pm \cap S^n, \varphi_i^\pm)\} \) is a smooth atlas, and so defines a smooth structure on \(S^n \). We call this its standard smooth structure.

(6/23/13) Page 23, two lines below the first displayed equation: Change “any subspace \(S \subseteq V \)” to “any \(k \)-dimensional subspace \(S \subseteq V \).”

(9/15/19) Page 24, first full paragraph, fourth line: Change “any subspace \(S \)” to “any \(k \)-dimensional subspace \(S \).”

(12/19/18) Page 26, first line: Change \(U \cap \varphi^{-1}(\text{Int } H^n) \) to \(\varphi^{-1}(\text{Int } H^n) \).

(12/19/18) Page 27, last paragraph, sixth line: Change \(\bar{U} \cap H^n \) to \(\bar{U} \cap U \).

(2/22/15) Page 29, proof of Theorem 1.46, second paragraph, line 4: Change \(\varphi(U \cap V) \) to \(\psi(U \cap V) \).

(10/8/15) Page 30, Problem 1-6: Interpret the formula for \(F_s \) to mean \(F_s(0) = 0 \) when \(s \leq 1 \).

(1/27/18) Page 31, Fig. 1.13: Change \{\(x^n = 0 \)\} to \{\(x^{n+1} = 0 \)\}.

(3/12/18) Page 31, Problem 11-11, next-to-last line: Change \(S^n \) to \(S^n \setminus \{N\} \).

(4/25/17) Page 45, second paragraph: Replace the last sentence of that paragraph with the following: “If \(N \) has empty boundary, we say that a map \(F: A \to N \) is smooth on \(A \) if it has a smooth extension in a neighborhood of each point: that is, if for every \(p \in A \) there exist an open subset \(W \subseteq M \) containing \(p \) and a smooth map \(\bar{F}: W \to N \) whose restriction to \(W \cap A \) agrees with \(F \). When \(\partial N \neq \varnothing \), we say \(F: A \to N \) is smooth on \(A \) if for every \(p \in A \) there exist an open subset \(W \subseteq M \) containing \(p \) and a smooth chart \((V, \psi) \) for \(N \) whose domain contains \(F(p) \), such that \(F(W \cap A) \subseteq V \) and \(\psi \circ F|_{W \cap A} \) is smooth as a map into \(\mathbb{R}^n \) in the sense defined above (i.e., it has a smooth extension in a neighborhood of each point).”

(7/23/14) Page 45, last displayed equation: The first = sign should be \(\subseteq \).

(9/15/19) Page 46, line 9: Change “on an open subset” to “on a nonempty open subset.”
Page 47, proof of Theorem 2.29, second paragraph: Replace the first sentence of the paragraph by “Let \(h : \mathbb{R}^n \to \mathbb{R} \) be a smooth bump function that is positive in \(B_1(0) \) and zero elsewhere.”

Page 56, first displayed equation: Change \(dt(v)_p \) to \(dt_p(v) \).

Page 56, just below the last displayed equation: Replace “the last two equalities follow” by “the last equality follows.”

Page 58, proof of Lemma 3.11, next-to-last line: Change \(H^n \) to \(\text{Int} H^n \).

Page 68, proof of Proposition 3.21: Insert the following sentence at the beginning of the proof: “Let \(n = \dim M \) and \(m = \dim N \).” Then in the second sentence, change (3.9) to (3.10). Finally, in the displayed equation, change \(F^n \) to \(F^m \) (twice).

Page 70, two lines above Corollary 3.25: Change “Proposition 3.23” to “Proposition 3.24.”

Page 76, Problem 3-8: Add the following remark: “(For \(p \in \partial M \), we need to allow curves with domain \([0, \varepsilon) \) or \((-\varepsilon, 0] \) and to interpret the derivatives as one-sided derivatives.)”

Page 78, proof of Prop. 4.1, third and fourth lines: Change \(m \) to \(n \) (twice).

Page 100, proof of Proposition 5.4, next-to-last line: Change “It a homeomorphism” to “It is a homeomorphism.”

Page 104, line below the proof of Theorem 5.11: Change “See Theorem 5.31” to “See Problem 5-24.” [Problem 5-24 is a new problem, described later in this list. Theorem 5.31 is not appropriate in this situation because it applies only to manifolds without boundary.]

Page 105, line 4 from the bottom: Change \(F \) to \(\Phi \).

Page 112, Fig. 5.10: Interchange the labels \(M \) and \(N \) on the figure, to be consistent with the notation in Theorem 5.29.

Page 113, line 6: Change the definition of \(\tilde{\psi} \) to \(\tilde{\psi} = \pi \circ \psi |_{V_0} \).

Page 118, Fig. 5.13: Change \(N \) to \(v \).

Page 120, proof of Proposition 5.46: At the beginning of the proof, insert this sentence: “Let \(F : D \to M \) denote the inclusion map.”

Page 121, line 5: Change \(x^m \) to \(x^n \).

Page 123, Problem 5-6: Add the assumption that \(m > 0 \).

Page 124: At the end of the page, add a new problem:
5-24. Suppose \(M \) is a smooth manifold with boundary, \(N \) is a smooth manifold, and \(F : N \to M \) is a smooth map whose image is contained in \(\partial M \). Show that \(F \) is smooth as a map into \(\partial M \), and use this to prove that \(\partial M \) has a unique smooth structure making it an embedded submanifold of \(M \).
(12/19/18) Page 129, proof of Sard’s theorem, second paragraph: Just before the last sentence of the paragraph, insert the following: “In the \mathbb{R}^n case, extend F to a smooth map on an open subset of \mathbb{R}^m, and replace U by that open subset; if we can show that the set of critical values of the extended map has measure zero, then the same is true of the set of critical values of F.”

(3/16/19) Page 129, displayed equation near the bottom of the page: Change “ith partial derivatives” to “ith-order partial derivatives.”

(12/26/18) Page 130, just below equation (6.2): Right after the displayed equation, insert “(where the component functions F^2, \ldots, F^m might be different from the ones in the original coordinate chart).”

(3/28/20) Page 131, two lines below the first displayed equation: Change $A'(R/K)^{k+1}$ to $A'(R\sqrt{m}/K)^{k+1}$.

(1/8/18) Page 131, three lines below the first displayed equation: Insert “at most” before “K^n balls.”

(3/28/20) Page 131, second displayed equation: Change the left-hand side to $K^m(A')^n(R\sqrt{m}/K)^{n(k+1)}$, and in the next line, change the definition of A'' to $A'' = (A')^n(R\sqrt{m})^{n(k+1)}$.

(4/17/13) Page 132, proof of Lemma 6.13, second paragraph: This argument does not apply when $\partial M \neq \emptyset$, because in that case $M \times M$ is not a smooth manifold with boundary. Instead, we can consider the restrictions of κ to $(M \times \text{Int} M) \setminus \Delta_M$ and to $(M \times \partial M) \setminus \Delta_M$ (both of which are smooth manifolds with boundary), and note that there is a point $[t] \in \mathbb{R}P^{n-1}$ that is not in the image of τ or either of these restrictions of κ. [Thanks to David Iglesias Ponte for suggesting this correction.]

(12/19/18) Page 134, proof of Theorem 6.15, just after the fourth paragraph of the proof: Insert the following: “The argument above still works when M is an arbitrary compact subset of a larger manifold \tilde{M} with or without boundary, by covering M with finitely many coordinate balls or half-balls for \tilde{M}. The result is a smooth injective map $F : M \to \mathbb{R}^{nm+m}$ whose differential is injective at each point.” [This is needed in the ensuing argument for the noncompact case, because the sets E_i might not be regular domains when $\partial M \neq \emptyset$.]

(7/3/15) Page 134, displayed equations two-thirds of the way down the page: In the definition of E_i, there’s an “$i - 1$” that should be “$i - j$.” It should read $E_i = f^{-1}([b_{i-1}, a_{i+1}])$.

(12/19/18) Page 134, just below the displayed equations two-thirds of the way down the page: Delete the sentence “By Proposition 5.47, each E_i is a compact regular domain.”

(7/2/18) Page 137, first paragraph under the subheading “Tubular Neighborhoods,” fifth line: Change R^n to \mathbb{R}^n.

(7/27/18) Page 138, proof of Theorem 6.23, end of the first paragraph: Change “standard coordinate frame” to “standard coordinate basis.”

(12/5/16) Page 145, paragraph above Prop. 6.34: In the definition of smooth family of maps, replace “$F : M \times S \to N$” by “$F : N \times S \to M$.”

(9/28/19) Page 146, equation (6.9): Should read $dF(T_{(p,s)}W) \subseteq T_qX$. [Change the equal sign to subset.]

(9/28/19) Page 146, line below the last displayed equation: Change “$= T_qX$” to “$\subseteq T_qX$.”

(11/25/12) Page 148, Problem 6-13: Delete part (c). [This statement is simply wrong. It is true with the added hypothesis that F' is an embedding, but then it’s essentially just a restatement of part (b).]

(2/10/18) Page 150, last line: Change “Theorem 20.16” to “Theorem 20.22.”

(12/30/17) Page 160, first line: Change $R_{hh}^{-1} \to R_{hh}^{-1}$.

(33/18) Page 192, second last line: Change “Proposition 20.22” to “Proposition 20.23.”
Page 196, proof of Proposition 8.45, next-to-last line: Change \(\rho'_j(g) = \pi^j(g \cdot E_j) \).

Page 223, proof of Theorem 9.26: Replace the statement of Theorem 9.26 by “There’s a gap in this proof, because it is not necessarily the case that \(M(a) \) is a regular domain in \(\text{Int} M \). To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:

“Theorem 9.25 shows that \(\partial M \) has a collar neighborhood \(C_0 \) in \(M \), which is the image of a smooth embedding \(E_0 : [0,1) \times \partial M \to M \) satisfying \(E_0(0,x) = x \) for all \(x \in \partial M \). Let \(f : M \to \mathbb{R}^+ \) be a smooth positive exhaustion function. Note that \(W = \{ (t,x) : f(E_0(t,x)) > f(x) - 1 \} \) is an open subset of \([0,1) \times \partial M \) containing \(\{0\} \times \partial M \). Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function \(\delta : \partial M \to \mathbb{R}^+ \) such that \((t,x) \in W \) whenever \(0 \leq t < \delta(x) \). Define \(E : [0,1) \times \partial M \to M \) by \(E(t,x) = E_0(t\delta(x),x) \). Then \(E \) is a diffeomorphism onto a collar neighborhood \(C \) of \(\partial M \), and by construction \(f(E(t,x)) > f(x) - 1 \) for all \((t,x) \in [0,1) \times \partial M \). We will show that for each \(a \in (0,1) \), the set \(E([0,a]) \times \partial M \) is closed in \(M \). Suppose \(p \) is a boundary point of \(E([0,a]) \times \partial M \) in \(M \); then there is a sequence \(\{(t_i,x_i)\} \) in \((2/16/18) \) Page 164, just above the subheading: Replace the last line of the proof of Prop. 7.23 by “The action is smooth because each \(\varphi \) can be written locally as a composition of a smooth local section followed by \(\pi \).”

Page 169, first line: Change \(\tilde{G} \) to \(G \).

Page 170, Proof of Theorem 7.35: Replace the phrase “closed Lie subgroups such that \(N \) is normal” by “Lie subgroups such that \(N \) is normal and closed.” [In fact, using the result of Theorem 19.25 later in the book, the hypothesis that \(N \) is closed can also be omitted.]

Page 171, third line from the end of the proof: Change \(E_t \to E_j \), so the formula reads \(\rho'_j(g) = \pi^j(g \cdot E_j) \).

Page 174, Proof of Theorem 7-21: Replace the first sentence by “Prove that the groups in Problem 7-20 are isomorphic to direct products of the indicated groups in cases (a) and (c) if and only if \(n \) is odd, and in cases (b) and (d) if and only if \(n = 1 \).”

Page 178, Example 8.10(d): Change “Example 8.4” to “Example 8.5.”

Page 183, Example 8.20, next-to-last line: Change \(p = (u,v) \) to \(q = (u,v) \).

Page 184, proof of Proposition 8.22: After “Proposition 5.37,” insert “in the case \(\partial S = \emptyset \). When \(S \) has nonempty boundary, the proof of Proposition 5.37 still goes through using boundary slice coordinates for \(S \).”

Page 186, proof of Proposition 8.45, next-to-last line: Should read “\(F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \text{Id}_{\text{Lie}(H)} \) and \((F^{-1})_* \circ F_* = \text{Id}_{\text{Lie}(G)} \).”

Page 196, proof of Proposition 8.45, next-to-last line: Change “\(F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \text{Id}_{\text{Lie}(H)} \) and \((F^{-1})_* \circ F_* = \text{Id}_{\text{Lie}(G)} \)” to “\(F_* \circ (F^{-1})_* = (F \circ F^{-1})_* = \text{Id}_{\text{Lie}(H)} \) and \((F^{-1})_* \circ F_* = \text{Id}_{\text{Lie}(G)} \).”

Page 201, Problem 8-15: At the end of the last sentence, add “provided that \(\dim S > 0 \).”

Page 208, first line: Change to “This is just the existence and smoothness statements of Theorem D.1”

Page 213, first sentence of the last paragraph: The definition of \(t_0 \) should be \(t_0 = \sup \{ t \in \mathbb{R} : (t,p_0) \in W \} \).

Page 214, Fig. 9.6: The shaded area should be labeled \(W \), not \(\mathcal{D} \).

Page 217, Fig. 9.7: Both occurrences of \(\varphi \) should be \(\Phi \).

Page 219, second displayed equation: Change “\(V^\prime (0,p) = 0 \)” to “\(\Phi^\prime (0,p) = 0 \).”

Page 219, two lines below (9.12): Here and in the rest of the paragraph, change \(p_0 \) to \(p_1 \) (seven times) to avoid confusion with the prior unrelated use of \(p_0 \) in this proof.

Page 222, just below the section heading: Insert the following sentence: “On a manifold with boundary, the definitions of flow domain, flow, and infinitesimal generator of a flow are exactly the same as on a manifold without boundary.”

Page 223, line 2: Change \(\delta : M \to \mathbb{R}^+ \) to \(\delta : \partial M \to \mathbb{R}^+ \).

Page 223, proof of Theorem 9.26: There’s a gap in this proof, because it is not necessarily the case that \(M(a) \) is a regular domain in \(\text{Int} M \). To correct the problem, we have to choose our collar neighborhood more carefully. Replace the first sentence of the proof by the following paragraph:

“Theorem 9.25 shows that \(\partial M \) has a collar neighborhood \(C_0 \) in \(M \), which is the image of a smooth embedding \(E_0 : [0,1) \times \partial M \to M \) satisfying \(E_0(0,x) = x \) for all \(x \in \partial M \). Let \(f : M \to \mathbb{R}^+ \) be a smooth positive exhaustion function. Note that \(W = \{ (t,x) : f(E_0(t,x)) > f(x) - 1 \} \) is an open subset of \([0,1) \times \partial M \) containing \(\{0\} \times \partial M \). Using a partition of unity as in the proof of Theorem 9.20, we may construct a smooth positive function \(\delta : \partial M \to \mathbb{R} \) such that \((t,x) \in W \) whenever \(0 \leq t < \delta(x) \). Define \(E : [0,1) \times \partial M \to M \) by \(E(t,x) = E_0(t\delta(x),x) \). Then \(E \) is a diffeomorphism onto a collar neighborhood \(C \) of \(\partial M \), and by construction \(f(E(t,x)) > f(x) - 1 \) for all \((t,x) \in [0,1) \times \partial M \). We will show that for each \(a \in (0,1) \), the set \(E([0,a]) \times \partial M \) is closed in \(M \). Suppose \(p \) is a boundary point of \(E([0,a]) \times \partial M \) in \(M \); then there is a sequence \(\{(t_i,x_i)\} \) in
Page 223, proof of Theorem 9.26, last line of the first paragraph: Change $0 \leq t < a$ to $0 \leq s < a$.

Page 225, Example 9.31: At the end of the example, insert the sentence “If $n \geq 2$, then $M_1 \# M_2$ is connected.”

Page 226, Example 9.32, fifth line: Replace the sentence beginning “It is a smooth manifold without boundary …” by “It is a topological manifold without boundary, and can be given a smooth structure such that each of the natural maps $M \to D(M)$ (induced by inclusion into the left and right summands of the disjoint union) is a smooth embedding.”

Page 230, line 1 and first displayed equation: Change $\theta_t(x)$ to $\theta_t(u)$ (twice).

Page 230, second paragraph: “from Case” should be “from Case 1.”

Page 230, fourth paragraph, last line: Change $[X, Y]$ to $[V, W]$.

Page 234, proof of Theorem 9.46, second paragraph: Replace the two parenthesized sentences by the following: “(To see this, just choose $\epsilon_1 > 0$ and $U_1 \subseteq U$ such that θ_1 maps $(-\epsilon_1, \epsilon_1) \times U_1$ into U, and then inductively choose ϵ_i and U_i such that θ_i maps $(-\epsilon_i, \epsilon_i) \times U_i$ into U_{i-1}. Taking $\epsilon = \min \{\epsilon_i\}$ and $Y = U_k$ does the trick.)”

Page 241, Example 9.52: At the end of the example, add the sentence “Note that u is smooth on the open set $\mathbb{R}^2 \setminus \{0\}$, which is a neighborhood of S.”

Page 246, Problem 9-11: Delete the second sentence of the hint. [Because N is inward-pointing along ∂M, no integral curve that starts on ∂M can hit the boundary again, because the vector field would have to be tangent to ∂M or outward-pointing at the first such point.]

Page 248, first displayed equation: Should read

$$V(t, p) = \frac{\partial}{\partial t} H(H_t^{-1}(p), t).$$

Page 248, Problem 9-22(c): Replace the problem statement by

(c) $\frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = -y$, \hspace{1cm} $u(0, y) = 0$.

[Without this sign change, the third claim in Problem 9-23 is not true.]

Page 254, paragraph beginning “With respect to,” third line: Replace $V_p \times \mathbb{R}^k$ with $U_a \times \mathbb{R}^k$.

Page 255, Example 10.8: Replace the sentence beginning with “If E is a smooth vector bundle” by the following: “If E is a smooth vector bundle and $S \subseteq M$ is an embedded submanifold, it follows easily from the chart lemma that $E|_S$ is a smooth vector bundle. If S is merely immersed, we give $E|_S$ a topology and smooth structure making it into a smooth rank-k vector bundle over S as follows: For each $p \in S$, choose a neighborhood U of p in M over which there is a local trivialization Φ of E, and a neighborhood V of p in S that is embedded in M and contained in U. Then the restriction of Φ to $\pi^{-1}(V)$ is a bijection from $\pi^{-1}(V)$ to $V \times \mathbb{R}^k$, and we can apply the chart lemma to these bijections to yield the desired structure.”
Page 260, two lines above Proposition 10.22: Change \(\tau^n(p) \) to \(\tau^k(p) \).

Page 261, statement of Proposition 10.25, first line: Change \(\pi' : E \to M' \) to \(\pi' : E' \to M' \).

Page 264, paragraph above the subheading, first sentence: “homomorphism” should be “homomorphisms.”

Page 271, Problem 10-18: Change “a properly embedded” to “an embedded.”

Page 271, Problem 10-19(d): Add the following: [Hint: For the “only if” direction, to show that \(F \) is compact, use a finite number of local trivializations to construct a closed set over which \(E \) is trivial.]

Page 301, Problem 11-10(c): Change “closed forms” to “closed covector fields” (twice).

Page 301, Problem 11-10(c): Change \(S^2 \) to \(S^2 \).

Page 303, Problem 11-13: Add the assumption that \(n > 0 \).

Page 303, just below the commutative diagram: Insert this sentence: “A natural transformation is called a natural isomorphism if each map \(\lambda_X \) is an isomorphism in \(D \).”

Page 303, Problem 11-18(b) and (c): Change “natural transformation” to “natural isomorphism” in both parts.

Page 317, paragraph beginning “Any one”: At the end of the paragraph, add this sentence: “If \(A \) and \(B \) are tensor fields, then \(A \otimes B \) denotes the tensor field defined by \((A \otimes B)_p = A_p \otimes B_p \).”

Page 320, displayed equation just below the middle of the page: Change \(A^{i_1 \ldots i_k}_{j_1 \ldots j_l} \) to \(A^{i_1 \ldots i_k}_{j_1 \ldots j_l} \) on the third line of the display, and again on the line below the display. [The last lower index should be \(j_l \), not \(i_l \).]

Page 320, statement of Proposition 12.25: Change the domain and codomain of \(G \): It should read \(G : P \to M \).

Page 320, Proposition 12.25(e): Should read \((F \circ G)^* B = G^*(F^* B)\).

Page 333, first line: Change \(U \subseteq M \) to \(V \subseteq M \).

Page 345, Problem 13-10: In the last line of the problem statement, change \(L_g(\vec{y}) > L_g(\gamma) \) to \(L_g(\vec{y}) \geq L_g(\gamma) \), and delete the phrase “unless \(\vec{y} \) is a reparametrization of \(\gamma \).” [Because the definition of reparametrization that I’m using requires a diffeomorphism of the parameter domain, the original problem statement was not true.]

Page 355, proof of Lemma 14.10: At the beginning of the proof, insert “Let \((E_1, \ldots, E_n) \) be the basis for \(V \) dual to \((e^j) \).”

Page 356, Case 4, second line: Should read “brings us back to Case 3.”

Page 368, second paragraph: At the end of the first sentence of the paragraph, insert “(see pp. 341–343).”

Page 368, paragraph below equation (14.25): Change \(TM \) to \(T\mathbb{R}^3 \) (twice).

Page 371, three lines above (14.31): Change that sentence to “The only terms in this sum that can possibly be nonzero are those for which \(J \) has no repeated indices and \(m \) is equal to one of the indices in \(J \), say \(m = j_p \).”

Page 374, Problem 14-2: Add “[Hint: One way to approach this is to prove first that a \(k \)-covector \(\omega \) is decomposable if and only if the map from \(\mathbb{R}^n \) to \(\Lambda^{k-1}(\mathbb{R}^n^*) \) given by \(v \mapsto v \cdot \omega \) has \((n-k) \)-dimensional kernel.]”

Page 377, line 4: Change “is a simply” to “is simply.”
Page 386, just above Proposition 15.24: After “determines an orientation on ∂M,” insert “if M is oriented.”

Page 389, Exercise 15.30: Change “a local isometry” to “an orientation-preserving local isometry.”

Page 397, Problem 15-1: At the end of the last sentence, add “when $n > 1$.”

Page 397, Problem 15-3: Change x_B^n to x_B^{n+1} (twice).

Page 397, Problem 15-4: Change the first sentence to “Let θ be the flow of a smooth vector field on a smooth manifold.” [The stated result is true also for manifolds with boundary and for nonmaximal flows, but to prove it, one must first do a little work to generalize some of the results of Theorem 9.12 to more general flows.]

Page 402, lines 2–3: There should not be a paragraph break before “and.”

Page 403, just after the last displayed equation: Add “(In the H_n case, apply Theorem C.26 to the interiors of D and E considered as subsets of \mathbb{R}^n.)”

Page 409, line 2: Change $'i$ to $'i$.

Page 415, paragraph above Example 16.19: Change “interior charts and charts with corners” to “interior charts, boundary charts, and charts with corners.”

Page 416, line 3 from the bottom: Change “$0/D_p$” to “$\partial M_0/D_p$.”

Page 418, statement of Proposition 16.21: Delete “compact,” and change “n-manifold” to “n-manifold.”

Page 419, proof of Theorem 16.25, first paragraph: Replace the second and third sentences of the paragraph by the following: “By means of smooth charts and a partition of unity, we may reduce the theorem to the cases in which $M = \mathbb{R}^n$, $M = \mathbb{H}^n$, or $M = \mathbb{R}^n_+$. The \mathbb{R}^n and \mathbb{H}^n cases are treated just as before.”

Page 424, second displayed equation: Change $S.\beta(X)$ to $\partial M_0.\beta(X)$.

Page 426, three lines below the section heading: “cam” should be “can.”

Page 430, Proposition 16.38(c): This statement is wrong. Change it to “If F is smooth, then $F^* \mu$ is a continuous density on M; and if F is a local diffeomorphism, $F^* \mu$ is smooth.”

Page 439, Problem 16-23: The formula for g should be

$$g = \frac{dx^2 + dy^2}{(1-x^2-y^2)^2}.$$
Let $Y_1 = \bigcup_{i=2}^{\infty} W_i$. Because M is connected, each component of Y_1 meets W_1, and by local finiteness of $\{ W_j \}$, there are only finitely many such components. Such a component is precompact in M if and only if it is a union of finitely many W_i’s. Let V_1 be the union of W_1 together with all of the precompact components of Y_1, and let X_1 be the union of all W_i’s not contained in V_1. Then V_1 is connected and precompact, and X_1 has no precompact components. Proceeding by induction, suppose we have defined connected, precompact open sets V_1, \ldots, V_m whose union contains $W_1 \cup \cdots \cup W_m$, and such that the union X_m of all the W_i’s not contained in $V_1 \cup \cdots \cup V_m$ has no precompact components. Let j_m be the smallest index such that W_{j_m} is not contained in $V_1 \cup \cdots \cup V_m$, and let Y_{m+1} be the union of all W_i’s other than W_{j_m} not contained in $V_1 \cup \cdots \cup V_m$. Any precompact component of Y_{m+1} must meet W_{j_m}, because otherwise it would be a precompact component of X_m. Let V_{m+1} be the union of W_{j_m} with all of the precompact components of Y_{m+1}. As before, V_{m+1} is precompact and connected, and the union X_{m+1} of the W_i’s not contained in $V_1 \cup \cdots \cup V_{m+1}$ has no precompact components. Then by construction, for each j, the set $X_j = \bigcup_{j \geq j} V_i$ has no precompact components. If some V_j does not meet V_k for any $k > j$, then V_j itself is a precompact component of X_{j-1}, which is a contradiction. Thus for each j, there is some $k > j$ such that $V_j \cap V_k \neq \emptyset$.

Proof of Theorem 17.32. Choose an orientation on M. Let $\{ V_j \}_{j=1}^{\infty}$ be an open cover of M satisfying the conclusions of the preceding lemma. For each j, let $K(j)$ denote the least integer $k > j$ such that $V_j \cap V_k \neq \emptyset$, and let θ_j be an n-form compactly supported in $V_j \cap V_{K(j)}$ whose integral is 1. Let $\{ \psi_j \}_{j=1}^{\infty}$ be a smooth partition of unity subordinate to $\{ V_j \}_{j=1}^{\infty}$.

Now suppose ω is any n-form on M, and let $\omega_j = \psi_j \omega$ for each j. Let $c_1 = \int_{V_1} \omega_1$, so that $\omega_1 - c_1 \theta_1$ is compactly supported in V_1 and has zero integral. It follows from Theorem 17.30 that there exists $\eta_1 \in \Omega_c^{n-1}(V_1)$ such that $d\eta_1 = \omega_1 - c_1 \theta_1$. Suppose by induction that we have found η_1, \ldots, η_m and constants c_1, \ldots, c_m such that for each $j = 1, \ldots, m$, $\eta_j \in \Omega_c^{n-1}(V_j)$ and

$$d\eta_j = \left(\omega_j + \sum_{i : K(i) = j} c_i \theta_i \right) - c_j \theta_j.$$

(1)

Let

$$c_{j+1} = \int_{V_{j+1}} \left(\omega_{j+1} + \sum_{i : K(i) = j+1} c_i \theta_i \right).$$

Then by Theorem 17.30, there exists $\eta_{j+1} \in \Omega_c^{n-1}(V_{j+1})$ satisfying the analog of (1) with j replaced by $j+1$. Set $\eta = \sum_{j=1}^{\infty} \eta_j$, with each η_j extended to be zero on $M \sim V_j$. By local finiteness, this is a smooth $(n-1)$-form on M. It satisfies

$$d\eta = \omega + \sum_{j=1}^{\infty} \left(\sum_{i : K(i) = j} c_i \theta_i \right) - \sum_{j=1}^{\infty} c_j \theta_j.$$

Each term $c_i \theta_i$ appears exactly once in the first sum above, so the two sums cancel each other.

(7/27/16) **Page 457, line below the second displayed equation:** Change “Theorem 17.31” to “Theorem 17.30.”

(7/12/16) **Page 463, line above equation (17.15):** Insert missing space before “Similarly.”

(7/13/16) **Page 464, end of proof of Corollary 17.42:** Insert “Note that this construction produces a form σ whose support is contained in $U \cap V$. [This might be useful for solving Problem 18-6.]”

(7/12/16) **Page 471, last paragraph:** Replace the sentence starting “The hardest part …” with “The hardest part is showing that the singular chain complex of M can be replaced by a chain complex built out of simplices whose images lie in either U or V, without changing the homology.”

(9/12/17) **Page 487, Problem 18-1, first line:** Change “an oriented smooth manifold” to “a smooth manifold.”
(8/8/18) **Page 489, Problem 18-7(b):** Add to the hint: “In order to use Lemma 17.27, you’ll need to prove the following fact: _Every bounded convex open subset of \(\mathbb{R}^n \) is diffeomorphic to \(\mathbb{R}^n \)._ To prove this, let \(U \) be such a subset, and without loss of generality assume \(0 \in U \). First show that there exists a smooth nonnegative function \(f \in C^\infty(U) \) such that \(f(0) = 0 \) and \(f(x) \geq 1/d(x) \) away from a small neighborhood of \(0 \), where \(d(x) \) is the distance from \(x \) to \(\partial U \). Next, show that \(g(x) = 1 + \int_0^1 f(tx) dt \) is a smooth positive exhaustion function on \(U \) that is nondecreasing along each ray starting at \(0 \). Finally, show that the map \(F: U \to \mathbb{R}^n \) given by \(F(x) = g(x)x \) is a bijective local diffeomorphism. Also, you may use the fact that the conclusion of the five lemma is still true even if the appropriate diagram commutes only up to sign.”

(1/15/13) **Page 491, Example 19.1(c):** Delete the word “unit.”

(5/22/15) **Page 492, line above Proposition 19.2:** Change “lie” to “Lie.”

(12/17/15) **Page 492, proof of Proposition 19.2, fourth line:** Change “Given \(p \in M’’ \) to “Given \(p \in U \).”

(9/12/16) **Page 506, Lemma 19.24, last line:** Before “left-invariant,” insert “smooth.”

(6/1/20) **Page 512, Problem 19-4:** In the first line of the problem, change “all three coordinates are positive” to “\(z \) is positive.” Then replace the last sentence by “Find an explicit global chart on \(U \) in which \(D^3 \) is spanned by the first two coordinate vector fields.” [Technically it might not be a flat chart because its image need not be a cube in \(\mathbb{R}^3 \).]

(10/4/17) **Page 518, sentence before Prop. 20.3:** Change “one-parameter subgroups of GL(\(n, \mathbb{R} \))” to “one-parameter subgroups of subgroups of GL(\(n, \mathbb{R} \)).”

(5/23/16) **Page 521, first displayed equation:** Change \(d \Phi_0 \) to \(d \Phi_e \) (twice).

(6/9/19) **Page 528, line 9:** Change two instances of \((g, p) \) in subscripts to \((g, q) \).

(5/19/18) **Page 528, just below the displayed equation in the middle of the page:** The smoothness of the map \(\sigma_q \) is not quite immediate from the definition. Replace the three sentences beginning “It follows” with this: “Because \(S_p \) is a weakly embedded submanifold by Theorem 19.17, to show that \(\sigma_q \) is a smooth local section of \(S_p \), it suffices to show that it is smooth into \(G \times M \) and takes its values in \(S_p \). The first component function is smooth as a map into \(G \) by smoothness of group multiplication. To show that the second component is smooth into \(M \) as a function of \(\tilde{X} \) (and therefore of \(\exp X \)), you need to use the argument sketched out just below equation (20.10): as in the proof of Prop. 20.8, apply the fundamental theorem on flows to the vector field \(\tilde{X}(p, X) = (\tilde{X}_p, 0) \) on \(M \times q \). A straightforward computation shows that \(y(t) = (\exp tX, \eta(t, \tilde{X}(p, X)) \) is an integral curve of \(\tilde{X} \) starting at \((g, q) \), from which it follows easily that \(\sigma_q(\exp X) = y(1) \in S_p \).”

(1/10/17) **Page 537, Problem 20-6(a):** Change \(B \in \mathfrak{sl}(n, \mathbb{R}) \) to \(B \in \mathfrak{sl}(n, \mathbb{R}) \).

(5/31/16) **Page 538, Problem 20-11(b):** Here’s a better hint, which doesn’t require proving part (a) first: “[Hint: Consider the graph of \(F \) as a subgroup of \(G \times H \).]”

(10/18/17) **Page 542, middle of the paragraph before Example 21.3:** Change “the action of \(\mathbb{R}^k \) on \(\mathbb{R}^n \)” to “the action of \(\mathbb{R}^k \) on \(\mathbb{R}^k \times \mathbb{R}^n \).”

(2/25/18) **Page 548, last two lines:** Allen Hatcher’s name is misspelled. (Sorry, Allen.)

(5/23/16) **Page 549, proof of Proposition 21.12, last sentence:** Change the first phrase of that sentence to “Second, if \(p, p' \in E \) are in different orbits and \(\pi(p) \neq \pi(p') \), …” Then add the following sentences at the end of the proof: “If \(p \) and \(p' \) are in different orbits and \(\pi(p) = \pi(p') \), let \(W \) be an evenly covered neighborhood of \(\pi(p) \), and let \(V, V' \) be the components of \(\pi^{-1}(W) \) containing \(p \) and \(p' \), respectively. For any \(g \in \text{Aut}_g(E) \), a simple connectedness argument shows that \(g \cdot V \) is a component of \(\pi^{-1}(W) \); if it had nontrivial intersection with \(V \) it would have to be equal to \(V \), which would imply \(g \cdot p = p' \), a contradiction.”
Page 567, two lines above Proposition 22.8: Insert “a” before “2-covector.”

Page 568, Example 22.9(a), first line: The coordinates should be \((x^1, \ldots, x^n, y^1, \ldots, y^n)\). (The last coordinate is \(y^n\), not \(x^n\).)

Page 572, middle of the page: Replace the sentence starting “On the other hand” by this: “On the other hand, the left-hand side is just the ordinary \(t\)-derivative of a time-dependent tensor on a fixed vector space, and expanding in terms of a basis shows that it satisfies a similar product rule.”

Page 573, statement of Proposition 22.15, second line: Change “\(V W J M\)” to “\(V W J M! TM\)” and change \(\) to \(\).
(1/18/21) **Page 664, statement of Theorem D.1(b):** After the phrase “Any two differentiable solutions to (D.3)–(D.4),” insert “defined on intervals containing \(t_0 \).”

(12/2/15) **Page 666, just below the fifth display:** After the sentence ending “by our choice of \(\delta \) and \(\epsilon \),” insert “(If \(t < t_0 \), interchange \(t \) and \(t_0 \) in the second line above.)”

(1/18/21) **Page 664, statement of Theorem D.4:** After the phrase “any two differentiable solutions to (D.3)–(D.4),” insert “defined on intervals containing \(t_0 \).”

(1/18/21) **Page 668, paragraph below equation (D.10):** In the fourth line of the paragraph, change \(\overline{W} \) to \(W \).

(1/18/21) **Page 670, displayed inequality between (D.17) and (D.18):** Change \(n \) to \(n^2 \).

(1/18/21) **Page 670, last line:** Change \(n \) to \(n^2 \) in the definition of \(B \).

(1/18/21) **Page 671, inequality (D.19):** Change \(n \) to \(n^2 \) (twice).

(12/15/20) **Page 671, just below (D.19):** Replace the sentence “Since the expression on the right can be made as small as desired by choosing \(h \) and \(\tilde{h} \) sufficiently small, this shows . . . ” by the following: “Thus the expression on the left can be made as small as desired by choosing \(h \) and \(\tilde{h} \) sufficiently small. This shows . . . ”

(6/11/19) **Page 692:** Under the entry for “Form,” delete the references to page 294 for “closed” and page 292 for “exact.”

(2/25/18) **Page 693:** The index entry for “Hatcher, Allen” is misspelled.